We present SEEK (search-based exploration of expression compendia; http://seek.princeton.edu/), a query-based search engine for very large transcriptomic data collections, including thousands of human data sets from many different microarray and high-throughput sequencing platforms. SEEK uses a query-level cross-validation-based algorithm to automatically prioritize data sets relevant to the query and a robust search approach to identify genes, pathways and processes co-regulated with the query. SEEK provides multigene query searching with iterative metadata-based search refinement and extensive visualization-based analysis options.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768301 | PMC |
http://dx.doi.org/10.1038/nmeth.3249 | DOI Listing |
J Chem Inf Model
January 2025
Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.
View Article and Find Full Text PDFSci Data
January 2025
Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603 Ernakulam North PO., Kochi, 682018, Kerala, India.
Mussels, particularly Perna viridis, are vital sentinel species for toxicology and biomonitoring in environmental health. This species plays a crucial role in aquaculture and significantly impacts the fisheries sector. Despite the ecological and economic importance of this species, its omics resources are still scarce.
View Article and Find Full Text PDFSci Data
January 2025
Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong.
Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
The characteristics of data produced by omics technologies are pivotal, as they critically influence the feasibility and effectiveness of computational methods applied in downstream analyses, such as data harmonization and differential abundance analyses. Furthermore, variability in these data characteristics across datasets plays a crucial role, leading to diverging outcomes in benchmarking studies, which are essential for guiding the selection of appropriate analysis methods in all omics fields. Additionally, downstream analysis tools are often developed and applied within specific omics communities due to the presumed differences in data characteristics attributed to each omics technology.
View Article and Find Full Text PDFSci Data
January 2025
School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and variability across different systems, diagnosing abnormalities in ultrasound images is particularly challenging for less experienced clinicians. The development of artificial intelligence (AI) technology could assist in the diagnosis of ultrasound images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!