To elucidate how the nylon oligomer hydrolase (NylB) acquires its peculiar degradation activity towards non-biological amide bonds, we inspected the underlying enzymatic processes going from the induced-fit upon substrate binding to acylation. Specifically we investigated the mutational effects of two mutants, Y170F and D181G, indicated in former experiments as crucial systems because of their specific amino acid residues. Therefore, by adopting first-principles molecular dynamics complemented with metadynamics we provide a detailed insight into the underlying acylation mechanism. Our results show that while in the wild type (WT) the Tyr170 residue points the NH group towards the proton-acceptor site of an artificial amide bond, hence ready to react, in the Y170F this does not occur. The reason is ascribed to the absence of Tyr170 in the mutant, which is replaced by phenylalanine, which is unable to form hydrogen bond with the amide bond; thus, resulting in an increase in the activation barrier of more than 10 kcal mol(-1). Nonetheless, despite the lack of hydrogen bonding between the Y170F and the substrate, the highest free energy barrier for the induced-fit is similar to that of WT. This seems to suggest that in the induced-fit process, kinetics is little affected by the mutation. On the basis of additional structural homology analyses on the enzymes of the same family, we suggest that natural selection is responsible for the development of the peculiar hydrolytic activity of Arthrobacter sp. KI72.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4cp04419c | DOI Listing |
Lung
January 2025
Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
Background: The antibiotic resistance of Pseudomonas aeruginosa (PA) is increasingly severe in bronchiectasis patients. However, there is currently a lack of research on the clinical outcomes of carbapenem-resistant PA (CRPA) isolation in hospitalized exacerbations of bronchiectasis (HEB) patients. We investigated the incidence, risk factors, and clinical outcomes of PA and CRPA isolation in HEB patients.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
In recent years, researchers have drawn inspiration from natural ion channels to develop various artificial nanopores/nanochannels, including solid-state and biological. Through imitating the precise selectivity and single molecule sensing exhibited by natural ion channels, nanopores/nanochannels have been widely used in many fields, such as analyte detection, gene sequencing and so on. In these applications, the surface functionalization of nanopores/nanochannels directly determines the effectiveness in quantitative analysis and single molecule detection.
View Article and Find Full Text PDFJ Med Chem
December 2024
Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
Taking the structural information into account, we were able to tune the TEAD selectivity for a specific chemotype. However, different TEAD selectivity profiles did not affect the compound potency or efficacy in the NCI-H226 viability assay. Amides based on or analogues showed improved viability efficacy compared with the corresponding acids.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea.
Biodegradable polyesters provide an attractive alternative to non-degradable plastics but often encounter a tradeoff between biodegradability and mechanical properties because esters are rotational and lack hydrogen bonds. Conversely, natural polyamides, i.e.
View Article and Find Full Text PDFBMJ Open
December 2024
Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
Introduction: In sepsis treatment, achieving and maintaining effective antibiotic therapy is crucial. However, optimal antibiotic dosing faces challenges due to significant variability among patients with sepsis. Therapeutic drug monitoring (TDM), the current gold standard, lacks initial dosage adjustments and global availability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!