We report a novel, noncovalent hydrogel system crosslinked solely by receptor-ligand interactions between biotin and avidin. The simple hydrogel synthesis and functionalization together with the widespread use of biotinylated ligands in biosciences make this versatile system suitable for many applications. The gels possess a range of tunable physical properties, including stiffness, lifetime, and swelling. The erosion rates, unexpectedly fast compared to the kinetic parameters for biotin-avidin, are explored in terms of stretching tensions on the polymers, a concept well-known on the single-molecule level, but largely unexplored in supramolecular systems. As proof of utility, the gels were functionalized with different peptide sequences to control human mesenchymal stromal cell morphology in 3D culture.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201406366DOI Listing

Publication Analysis

Top Keywords

crosslinked solely
8
solely receptor-ligand
8
receptor-ligand interactions
8
physical properties
8
self-assembling hydrogels
4
hydrogels crosslinked
4
interactions tunability
4
tunability rationalization
4
rationalization physical
4
properties cell
4

Similar Publications

Noncentrifugal sugar (NCS) is an unrefined, dark brown sugar containing minerals and plant secondary metabolites, unlike refined white sugar (WS). This study explored using NCS in confectionary jellies as an alternative sugar. We used different concentrations of NCS and WS to prepare low methoxyl pectin (LMP) confectionery gels characterized by their physical and rheological properties along with time-domain nuclear magnetic resonance (TD-NMR) relaxometry.

View Article and Find Full Text PDF

Proteins play a central role in most biological processes within the cell, and deciphering how they interact is key to understand their function. Cross-linking coupled with mass spectrometry is an essential tool for elucidating protein-protein interactions (PPIs). Despite its importance, we still know surprisingly little about the principles that underlie the process of chemical cross-link formation itself and how it is influenced by different physicochemical factors.

View Article and Find Full Text PDF

Quantitative Macromolecular Modeling Assay of Biopolymer-Based Hydrogels.

Gels

October 2024

Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany.

The rubber elasticity theory has been lengthily applied to several polymeric hydrogel substances and upgraded from idealistic models to consider imperfections in the polymer network. The theory relies solely on hyperelastic material models in order to provide a description of the elastic polymer network. While this is also applicable to polymer gels, such hydrogels are rather characterized by their water content and visco-elastic mechanical properties.

View Article and Find Full Text PDF

Microgels show advantages over bulk hydrogels due to convenient control over microgel size and composition, and the ability to use microgels to modularly construct larger hierarchical scaffold hydrogel materials. Here, supramolecular chemistry is used to formulate supramolecular polymer, dynamic microgels solely held together by non-covalent interactions. Four-fold hydrogen bonding ureido-pyrimidinone (UPy) monomers with different functionalities are applied to precisely tune microgel properties in a modular way, via variations in monomer concentration, bifunctional crosslinker ratio, and the incorporation of supramolecular dyes and peptides.

View Article and Find Full Text PDF

Synthesis of body temperature-triggerable dynamic liquid crystal elastomers using Diels-Alder crosslinkers.

Chem Commun (Camb)

October 2024

Département de chimie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec, Canada.

Novel liquid crystal elastomers (LCEs) with solely Diels-Alder dynamic covalent bonds (DADCBs) as crosslinks and body temperature sensitivity have been developed. The appealing attributes of the material, such as recyclability, reprogrammability and reconfigurability, have led to soft actuators capable of reversible deformation stimulated by shifting between ambient and body temperature, highlighting the potential for innovative applications in the biomedical field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!