The cytochrome P450 2D (CYP2D) mediates synthesis of serotonin from 5-methoxytryptamine (5-MT), shown in vitro for cDNA-expressed CYP2D-isoforms and liver and brain microsomes. We aimed to demonstrate this synthesis in the brain in vivo. We measured serotonin tissue content in brain regions after 5-MT injection into the raphe nuclei (Model-A), and its extracellular concentration in rat frontal cortex and striatum using an in vivo microdialysis (Model-B) in male Wistar rats. Naïve rats served as control animals. 5-MT injection into the raphe nuclei of PCPA-(tryptophan hydroxylase inhibitor)-pretreated rats increased the tissue concentration of serotonin (from 40 to 90% of the control value, respectively, in the striatum), while the CYP2D inhibitor quinine diminished serotonin level in some brain structures of those animals (Model-A). 5-MT given locally through a microdialysis probe markedly increased extracellular serotonin concentration in the frontal cortex and striatum (to 800 and 1000% of the basal level, respectively) and changed dopamine concentration (Model-B). Quinine alone had no effect on serotonin concentration; however, given jointly with 5-MT, it prevented the 5-MT-induced increase in cortical serotonin in naïve rats and in striatal serotonin in PCPA-treated animals. These results indicate that the CYP2D-catalyzed alternative pathway of serotonin synthesis from 5-MT is relevant in the brain in vivo, and set a new target for the action of psychotropics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.13031 | DOI Listing |
Biomacromolecules
January 2025
School of Life Science, South China Normal University, Guangzhou 510631, China.
Cerebral ischemic stroke, neuronal death, and inflammation bring difficulties in neuroprotection and rehabilitation. In this study, we developed and designed the ability of natural lactoferrin-polyethylene glycol-polyphenylalanine-baicalein nanomicelles (LF-PEG-PPhe-Bai) to target and reduce these pathological processes, such as neurological damage and cognitive impairment in the stages of poststroke. Nanomicelles made from biocompatible materials have improved bioavailability and targeted distribution to afflicted brain areas.
View Article and Find Full Text PDFJ Neurochem
January 2025
Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.
Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.
View Article and Find Full Text PDFBrain
January 2025
Department of Neurology, National Taiwan University Hospital, Taipei, 100225, Taiwan.
Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.
View Article and Find Full Text PDFReprod Fertil Dev
January 2025
CNRS, INRAE, Université de Tours, PRC, Nouzilly, France.
Female infertility, which affects 10-20% of couples worldwide, is a growing health concern in developing countries. It can be caused by multiple factors, including reproductive disorders, hormonal dysfunctions, congenital malformations and infections. In vitro and in vivo studies have shown that plant extracts regulate gonadotropin-releasing hormone, kisspeptin, and gonadotropin expression and/or secretion at the hypothalamic-pituitary level and modulate somatic and germ cells, such as steroidogenesis, proliferation, apoptosis, and oxidative stress at the ovarian level.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland.
Advancing in vitro systems to address the effects of chemical pollution requires a thorough characterization of their functionalities, such as their repertoire of biotransformation enzymes. Currently, knowledge regarding the presence, activity magnitudes, and inducibility of different biotransformation pathways in vitro is scarce, particularly across organs. We report organ-specific kinetics for phase I and II biotransformation enzymes, under basal and induced conditions, in two in vitro systems using salmonid fish: S9 sub-cellular fractions from brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) were compared with rainbow trout cell lines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!