This study probes the nature of noncovalent interactions, such as cation-π, metal ion-lone pair (M-LP), hydrogen bonding (HB), charge-assisted hydrogen bonding (CAHB), and π-π interactions, using energy decomposition schemes-density functional theory (DFT)-symmetry-adapted perturbation theory and reduced variational space. Among cation-π complexes, the polarization and electrostatic components are the major contributors to the interaction energy (IE) for metal ion-π complexes, while for onium ion-π complexes (NH4+, PH4+, OH3+, and SH3+) the dispersion component is prominent. For M-LP complexes, the electrostatic component contributes more to the IE except the dicationic metal ion complexes with H2 S and PH3 where the polarization component dominates. Although electrostatic component dominates for the HB and CAHB complexes, dispersion is predominant in π-π complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.23827 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!