Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels comprise a family of cation channels activated by hyperpolarized membrane potentials and stimulated by intracellular cyclic nucleotides. The four members of this family, HCN1-4, show distinct biophysical properties which are most evident in the kinetics of activation and deactivation, the sensitivity towards cyclic nucleotides and the modulation by tyrosine phosphorylation. The four isoforms are differentially expressed in various excitable tissues. This review will mainly focus on recent insights into the functional role of the channels apart from their classic role as pacemakers. The importance of HCN channels in the cardiac ventricle and ventricular hypertrophy will be discussed. In addition, their functional significance in the peripheral nervous system and nociception will be examined. The data, which are mainly derived from studies using transgenic mice, suggest that HCN channels contribute significantly to cellular excitability in these tissues. Remarkably, the impact of the channels is clearly more pronounced in pathophysiological states including ventricular hypertrophy as well as neural inflammation and neuropathy suggesting that HCN channels may constitute promising drug targets in the treatment of these conditions. This perspective as well as the current therapeutic use of HCN blockers will also be addressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307311 | PMC |
http://dx.doi.org/10.3390/ijms16011429 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.
ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern.
View Article and Find Full Text PDFCells
December 2024
Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
Induced pluripotent stem cell (iPSC)-derived biological pacemakers have emerged as an alternative to traditional electronic pacemakers for managing cardiac arrhythmias. While effective, electronic pacemakers face challenges such as device failure, lead complications, and surgical risks, particularly in children. iPSC-derived pacemakers offer a promising solution by mimicking the sinoatrial node's natural pacemaking function, providing a more physiological approach to rhythm control.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, Niigata 951-8510, Japan. Electronic address:
Spinal cord injuries (SCIs) can lead to severe neuropathic pain and increased risk of myocardial infarction and heart failure; therefore, the use of analgesics against SCI-induced pain should be minimized because of their adverse effects on the cardiovascular system. Ivabradine, a blocker of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, is used as a bradycardic agent, but recent studies focused on it as an analgesic agent for peripheral neuropathic pain. However, the analgesic effects of ivabradine on central neuropathic pain, such as SCI-induced pain, have not been examined.
View Article and Find Full Text PDFIn the human heart, the binding of cyclic adenosine monophosphate (cAMP), a second messenger, to hyperpolarization and cyclic nucleotide-gated (HCN) regulates the automaticity of pacemaker cells. Recent single-molecule binding studies show that cAMP bound to each subunit of purified tetrameric HCN channels independently, in contrast to findings in cells. To explore the lipid membrane's role in cAMP regulation, we reconstituted purified human HCN channels in various lipid nanodiscs and resolved single molecule ligand-binding dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!