Development of Injectable Citrate-Based Bioadhesive Bone Implants.

J Mater Chem B

Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University; Academy of Orthopedics, Guangdong Province; Biology Department, Southern Medical University, Guangzhou, 510515, China ; Department of Biomedical Engineering, Materials Research Institutes, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park 16802, USA.

Published: January 2015

Injectable bone implants have been widely used in bone tissue repairs including the treatment of comminuted bone fractures (CBF). However, most injectable bone implants are not suitable for the treatment of CBF due to their weak tissue adhesion strengths and minimal osteoinduction. Citrate has been recently reported to promote bone formation through enhanced bioceramic integration and osteoinductivity. Herein, a novel injectable citrate-based mussel-inspired bioadhesive hydroxyapatite (iCMBA/HA) bone substitute was developed for CBF treatment. iCMBA/HA can be set within 2-4 minutes and the as-prepared (wet) iCMBA/HA possess low swelling ratios, compressive mechanical strengths of up to 3.2±0.27 MPa, complete degradation in 30 days, suitable biocompatibility, and osteoinductivity. This is also the first time to demonstrate that citrate supplementation in osteogenic medium and citrate released from iCMBA/HA degradation can promote the mineralization of osteoblastic committed human mesenchymal stem cells (hMSCs). In vivo evaluation of iCMBA/HA in a rabbit comminuted radial fracture model showed significantly increased bone formation with markedly enhanced three-point bending strength compared to the negative control. Neovascularization and bone ingrowth as well as highly organized bone formation were also observed showing the potential of iCMBA/HA in treating CBF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286886PMC
http://dx.doi.org/10.1039/C4TB01498GDOI Listing

Publication Analysis

Top Keywords

bone implants
12
bone formation
12
bone
10
injectable citrate-based
8
injectable bone
8
icmba/ha
6
development injectable
4
citrate-based bioadhesive
4
bioadhesive bone
4
implants injectable
4

Similar Publications

Forty Years of the Use of Cells for Cartilage Regeneration: The Research Side.

Pharmaceutics

December 2024

Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.

The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.

View Article and Find Full Text PDF

Bone transplantation ranks second worldwide among tissue prosthesis surgeries. Currently, one of the most promising approaches is regenerative medicine, which involves tissue engineering based on polymer scaffolds with biodegradable properties. Once implanted, scaffolds interact directly with the surrounding tissues and in a fairly aggressive environment, which causes biodegradation of the scaffold material.

View Article and Find Full Text PDF

Nanoarchitectonics for Advancing Bone Graft Technology: Integration of Silver Nanoparticles Against Bacteria and Fungi.

Microorganisms

December 2024

Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil.

Silver nanoparticles have garnered significant attention for their antimicrobial applications. The aim of this study was to develop and characterize a silver nanoparticle-enhanced bone graft and assess its antimicrobial and antibiofilm activities. Bone granules from bovine cancellous femur were impregnated with silver nanoparticles (50 nm).

View Article and Find Full Text PDF

A Review of Additive Manufacturing of Biodegradable Fe and Zn Alloys for Medical Implants Using Laser Powder Bed Fusion (LPBF).

Materials (Basel)

December 2024

Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Escuela Superior de Ciencias Experimentales y Tecnología (ESCET), Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain.

This review explores the advancements in additive manufacturing (AM) of biodegradable iron (Fe) and zinc (Zn) alloys, focusing on their potential for medical implants, particularly in vascular and bone applications. Fe alloys are noted for their superior mechanical properties and biocompatibility but exhibit a slow corrosion rate, limiting their biodegradability. Strategies such as alloying with manganese (Mn) and optimizing microstructure via laser powder bed fusion (LPBF) have been employed to increase Fe's corrosion rate and mechanical performance.

View Article and Find Full Text PDF

This article presents an evaluation of the accelerated aging impact on the structural properties of biodegradable PLA/HAp implants produced using 3D printing technology for use in traumatic bone defect repairs in individual patients. The designed biodegradable implants were sterilized with a radiation dose of 25 ± 0.99% kGy, then exposed to an accelerated aging process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!