Nosocomial infections due to bacteria have serious implications on the health and recovery of patients in a variety of medical scenarios. Since bacterial contamination on medical devices contributes to the majority of nosocomical infections, there is a need for redesigning the surfaces of medical devices, such as catheters and tracheal tubes, to resist the binding of bacteria. In this work, polyurethanes and polyacrylates/acrylamides, which resist binding by the major bacterial pathogens underpinning implant-associated infections, were identified using high-throughput polymer microarrays. Subsequently, two 'hit' polymers, (poly(methylmethacrylate--dimethylacrylamide)) and (poly(methoxyethylmethacrylate--diethylaminoethylacrylate--methylmethacrylate)), were used to coat catheters and substantially shown to decrease binding of a variety of bacteria (including isolates from infected endotracheal tubes and heart valves from intensive care unit patients). Catheters coated with polymer showed up to 96% reduction in bacteria binding in comparison to uncoated catheters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247239 | PMC |
http://dx.doi.org/10.1039/c4tb01129e | DOI Listing |
Food Chem
January 2025
Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi Province, China. Electronic address:
Deep-fat frying (DF) of mushrooms is favored by consumers due to its appealing sensory characteristics. However, their high oil absorption can lead to obesity and elevated cholesterol levels. Therefore, developing healthy food coatings as oil barriers and water-holding layers is essential.
View Article and Find Full Text PDFNat Prod Res
January 2025
Laboratory of Biology and Toxicology, Regional University of Cariri (URCA), Crato, Brazil.
Borneol, a compound found in resin-rich plants, is known for its aromatic and therapeutic properties. Widely used in countries, such as China, Japan, and Southeast Asia, borneol has also demonstrated efficacy in nanodrug administration. The primary objective of this study is to understand how borneol induces oxidative stress, its impact on the attraction and repulsion of , and its acute toxicity.
View Article and Find Full Text PDFSci Rep
January 2025
Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding Geilweilerhof, 76833, Siebeldingen, Germany.
The hairiness of the leaves is an essential morphological feature within the genus Vitis that can serve as a physical barrier. A high leaf hair density present on the abaxial surface of the grapevine leaves influences their wettability by repelling forces, thus preventing pathogen attack such as downy mildew and anthracnose. Moreover, leaf hairs as a favorable habitat may considerably affect the abundance of biological control agents.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
Inhibiting pathogen chemotaxis is a promising strategy for reducing disease pressure. However, this strategy is currently in the proof-of-concept stage. Here, was used as a model, as its biflagellated zoospores could sense genistein, a soybean root exudate, to navigate host and initiate infection.
View Article and Find Full Text PDFNanotheranostics
January 2025
Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai - 602105, Tamil Nadu, India.
In an era where chemical synthesis of nanomaterial is accounting for the generation of toxic wastes, leading to nanotoxicity, the present work focuses on the extraction of carbon nanodots from available natural sources such as turmeric smoke. The extracted carbon nanodots were characterized and their physical and chemical attributes were confirmed. The antibacterial property of the isolated carbon nanodots was tested against coliforms and oral bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!