Agitation of amyloid proteins to speed aggregation measured by ThT fluorescence: a call for standardization.

Mater Sci Eng C Mater Biol Appl

Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Research Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering and Biologic and Materials Sciences (Dentistry), University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:

Published: March 2015

This retrospective study of protein aggregation measured by Thioflavin T (ThT) fluorescence assay in published literature has assessed protein sensitivity to denaturing conditions that include elevated temperatures, fluctuations in pH, and concentration and, in particular, agitation to induce amyloid structure formation. The dynamic tracking of fluorescence shows a sigmoidal evolution as aggregates form; the resulting kinetics of association have been analyzed to explore the range of aggregation behavior which occurs based on environmental parameters. Comparisons between the experimental results of different groups have been historically difficult due to subtleties of experimental procedures including denaturing temperature, protein type and concentration, formulation differences, and how agitation is achieved. While it is clear that agitation has a strong influence on the driving force for aggregation, the use of magnetic stirring bar or shaker table rotational speed is insufficient to characterize the degree of turbulence produced during shear. The pathway forward in resolving dependence of aggregate formation on shear may require alternative methodologies or better standardization of the experimental protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2014.09.015DOI Listing

Publication Analysis

Top Keywords

aggregation measured
8
tht fluorescence
8
agitation
4
agitation amyloid
4
amyloid proteins
4
proteins speed
4
aggregation
4
speed aggregation
4
measured tht
4
fluorescence call
4

Similar Publications

In the present digital scenario, the explosion of Internet of Things (IoT) devices makes massive volumes of high-dimensional data, presenting significant data and privacy security challenges. As IoT networks enlarge, certifying sensitive data privacy while still employing data analytics authority is vital. In the period of big data, statistical learning has seen fast progressions in methodological practical and innovation applications.

View Article and Find Full Text PDF

Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Study of Monoclonal Antibodies Near an Oil-Water Interface.

J Pharm Sci

January 2025

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:

Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).

View Article and Find Full Text PDF

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

Pressure-Induced Emission Enhancement of Multi-Resonance o-Carborane Derivatives via Exciton‒Vibration Coupling Suppression.

Adv Sci (Weinh)

January 2025

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No.688, Jinhua, 321004, P. R. China.

Polycyclic multiple resonance (MR) molecules reveal narrowband emission, making them very promising emitters for high color purity display. Nevertheless, they still have challenges such as aggregation-induced emission quenching and spectral broadening. Overcoming these obstacles requires an in-depth understanding of the correlations among the alterations in their geometries, packing structures, and molecular vibrations and their corresponding changes in their photoluminescence (PL) properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!