Formation of platinum-coated templates of insulin nanowires used in reducing 4-nitrophenol.

Mater Sci Eng C Mater Biol Appl

Department of Materials Science and Engineering, University of Michigan, 2300 Hayward St, Ann Arbor, MI 48109, United States; Macromolecular Science and Engineering Research Center, University of Michigan, 2300 Hayward St, Ann Arbor, MI 48109, United States; Department of Biomedical Engineering and Biologic and Materials Sciences (Dentistry), University of Michigan, 2300 Hayward St, Ann Arbor, MI 48109, United States. Electronic address:

Published: March 2015

Modern technology demands ever smaller and more efficient nanoparticles, wires and networks. The natural tendency for amyloid proteins to form fibrillar structures is leveraged in creating high aspect ratio, nano-sized protein fibers as scaffolds for metallized nanowires. The morphology of fibrils is influenced by induced strain during denaturing and early aggregation and subsequent fibril deposition with platinum leads to controlled catalyst surfaces based on the initial protein precipitate. Here we have created insulin fibrils with varying morphologies produced in the presence of heat and strain and investigated their metallization with platinum by TEM. The catalytic activity of the metal-coated protein fibrils was resolved by tracking the reaction kinetics of the conversion of 4-nitrophenol to 4-aminophenol in the presence of the produced nanowires using UV-Vis spectroscopy. The effects of fibril morphology and temperature on the pseudo-first-order kinetics of conversion are investigated. Conversion to 4-aminophenol occurs on the order of minutes and is independent of temperature in the range tested (7 to 20°C). Two regimes of conversion are identified, an early higher rate, followed by a slower later rate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2014.11.056DOI Listing

Publication Analysis

Top Keywords

kinetics conversion
8
formation platinum-coated
4
platinum-coated templates
4
templates insulin
4
insulin nanowires
4
nanowires reducing
4
reducing 4-nitrophenol
4
4-nitrophenol modern
4
modern technology
4
technology demands
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!