Fluorescence reporters for Hfq oligomerization and RNA annealing.

Methods Mol Biol

T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA.

Published: September 2015

Fluorescence spectroscopy is a sensitive technique for detecting protein-protein, protein-RNA, and RNA-RNA interactions, requiring only nanomolar concentrations of labeled components. Fluorescence anisotropy provides information about the assembly of multi-subunit proteins, while molecular beacons provide a sensitive and quantitative reporter for base pairing between complementary RNAs. Here we present a detailed protocol for labeling Hfq protein with cyanine 3-maleimide and dansyl chloride to study the protein oligomerization and RNA binding by semi-native polyacrylamide gel electrophoresis (PAGE) and fluorescence anisotropy. We also present a detailed protocol for measuring the rate of annealing between a molecular beacon and a target RNA in the presence of Hfq using a stopped-flow spectrometer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340055PMC
http://dx.doi.org/10.1007/978-1-4939-2214-7_22DOI Listing

Publication Analysis

Top Keywords

oligomerization rna
8
fluorescence anisotropy
8
detailed protocol
8
fluorescence
4
fluorescence reporters
4
reporters hfq
4
hfq oligomerization
4
rna annealing
4
annealing fluorescence
4
fluorescence spectroscopy
4

Similar Publications

Objective: Hypertension significantly contributes to morbidity and mortality. Nuclear receptor subfamily 4 group a member 1 (Nur77) participates in regulating oxidative stress, but the mechanism in hypertension remains unclear. This study aimed to explore the function of Nur77 in oxidative stress induced by Angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) in hypertension.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) is the leading pathogen in the maxillo-facial region, affecting millions of individuals worldwide. Its periodic reactivation aligns with the most common course pattern of periodontal disease. The present study used RNA sequencing to investigate the transcriptomes of human gingival fibroblasts (HGFs) following HSV-1 infection from the early to late stages (12-72 h).

View Article and Find Full Text PDF

The p53 tumor suppressor is one of the most mutated genes responsible for tumorigenesis in most human cancers. Out of 29,891 genomic mutations reported in the TP53 Database (https://tp53.isb-cgc.

View Article and Find Full Text PDF

Cryo-EM structure of Nipah virus L-P polymerase complex.

Nat Commun

December 2024

Beijing Life Science Academy, Beijing, China.

Nipah virus (NiV) is a non-segmented, negative-strand (NNS) RNA virus, belonging to Paramyxoviridae. The RNA polymerase complex, composed of large (L) protein and tetrameric phosphoprotein (P), is responsible for genome transcription and replication by catalyzing NTP polymerization, mRNA capping and cap methylation. Here, we determine the cryo-electron microscopy (cryo-EM) structure of fully bioactive NiV L-P polymerase complex at a resolution of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!