ATPase site configuration of the RNA helicase DbpA probed by ENDOR spectroscopy.

Methods Mol Biol

Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.

Published: September 2015

Electron-nuclear double resonance (ENDOR) is a method that probes the local structure of paramagnetic centers via their hyperfine interactions with nearby magnetic nuclei. Here we describe the use of this technique to structurally characterize the ATPase active site of the RNA helicase DbpA, where Mg(2+)-ATP binds. This is achieved by substituting the EPR (electron paramagnetic resonance) silent Mg(2+) ion with paramagnetic, EPR active, Mn(2+) ion. (31)P ENDOR provides the interaction of the Mn(2+) with the nucleotide (ADP, ATP and its analogs) through the phosphates. The ENDOR spectra clearly distinguish between ATP- and ADP-binding modes. In addition, by preparing (13)C-enriched DbpA, (13)C ENDOR is used to probe the interaction of the Mn(2+) with protein residues. This combination allows tracking structural changes in the Mn(2+) coordination shell, in the ATPase site, in different states of the protein, namely with and without RNA and with different ATP analogs. Here, a detailed description of sample preparation and the ENDOR measurement methodology is provided, focusing on measurements at W-band (95 GHz) where sensitivity is high and spectral interpretations are relatively simple.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-2214-7_10DOI Listing

Publication Analysis

Top Keywords

atpase site
8
rna helicase
8
helicase dbpa
8
interaction mn2+
8
atp analogs
8
endor
6
site configuration
4
configuration rna
4
dbpa probed
4
probed endor
4

Similar Publications

Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis.

View Article and Find Full Text PDF

Prokaryotic ABCF proteins in overcoming ribosomal stalling: mechanisms, evolution, and perspective for applications in Bio-manufacturing.

Biosci Biotechnol Biochem

December 2024

Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-shi, Toyama, Japan.

ABCF proteins (ABCFs) are key components of prokaryotic translation systems, resolving ribosomal stalling. These ATPases contain two ATPase domains and interdomain linker, the length and composition of which are key determinants of their function. Antibiotic resistance ABCF (ARE-ABCFs) proteins, counteract ribosome-targeting antibiotics by binding to the E site of the 70S ribosome, promoting drug dissociation.

View Article and Find Full Text PDF

We have shown that virus-specific CD4 and CD8 memory T cells (TM) induce autophagy after T cell receptor (TCR) engagement to provide free glutamine and fatty acids, including in people living with HIV-1 (PLWH). These nutrients fuel mitochondrial ATP generation through glutaminolysis and fatty acid oxidation (FAO) pathways, to fulfill the bioenergetic demands for optimal IL-21 and cytotoxic molecule production in CD4 and CD8 cells, respectively. Here, we expand our knowledge on how the metabolic events that occur in the mitochondria of virus-specific TM down-stream of the autophagy are regulated.

View Article and Find Full Text PDF

Remodeling of Individual Nucleosomes in Nucleosome Arrays.

Methods Mol Biol

December 2024

Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.

Adenosin triphosphate (ATP)-dependent nucleosome remodeling factors sculpt the nucleosomal landscape of eukaryotic chromatin. They deposit, evict, or reposition nucleosomes along DNA in a process termed nucleosome sliding. Remodeling has traditionally been analyzed using mononucleosomes as a model substrate.

View Article and Find Full Text PDF

Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris.

Cell Tissue Res

December 2024

Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!