A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fracture healing using degradable magnesium fixation plates and screws. | LitMetric

Fracture healing using degradable magnesium fixation plates and screws.

J Oral Maxillofac Surg

Professor, Center for Craniofacial Regeneration, Department of Bioengineering, Department of Oral Biology, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA. Electronic address:

Published: February 2015

Purpose: Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery.

Materials And Methods: Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry.

Results: Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation.

Conclusion: Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joms.2014.09.007DOI Listing

Publication Analysis

Top Keywords

fracture healing
20
fixation devices
16
magnesium fixation
12
titanium devices
12
bone formation
12
magnesium
11
fracture
8
degradable magnesium
8
fixation
8
fixation plates
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!