Purpose: Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability.
Methods: A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL.
Results: Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed.
Conclusions: Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real-time performance and 100-200 Hz simulation rate are achieved for the liver model with 3,101 tetrahedrons. Major bottlenecks for simulation efficiency are cutting, collision processing and CPU-GPU data transfer. Future work needs to improve on these areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-014-1147-0 | DOI Listing |
J Clin Med
January 2025
Department of Neurosurgery, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
The convergence of Artificial Intelligence (AI) and neuroscience is redefining our understanding of the brain, unlocking new possibilities in research, diagnosis, and therapy. This review explores how AI's cutting-edge algorithms-ranging from deep learning to neuromorphic computing-are revolutionizing neuroscience by enabling the analysis of complex neural datasets, from neuroimaging and electrophysiology to genomic profiling. These advancements are transforming the early detection of neurological disorders, enhancing brain-computer interfaces, and driving personalized medicine, paving the way for more precise and adaptive treatments.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
Pediatric tuberculosis (TB) is still challenged by several diagnostic bottlenecks, imposing a high TB burden in low- and middle-income countries (LMICs). Diagnostic turnaround time (TAT) and ease of operation to suit resource-limited settings are critical aspects that determine early treatment and influence morbidity and mortality. Based on TAT and ease of operation, this article reviews the evolving landscape of TB diagnostics, from traditional methods like microscopy and culture to cutting-edge molecular techniques and biomarker-based approaches.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Anhui Institute of Information Technology, Wuhu, 241199, Anhui, China.
To address the challenge of accurately capturing tool wear states in small sample scenarios, this paper proposes a tool wear prediction method that combines XGBoost feature selection with a PSO-BP network. In order to solve the problem of input feature selection and parameter selection in BP neural network, a double-layer programming model of input feature and parameter selection is established, which is solved by XGBoost and PSO. Initially, vibration and cutting force signals from CNC machining are preprocessed using time-domain segmentation, Hampel filtering, and wavelet denoising.
View Article and Find Full Text PDFFood Res Int
February 2025
State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
The prepared foods sector has grown rapidly in recent years, driven by the fast pace of modern living and increasing consumer demand for convenience. Prepared foods are taking an increasingly important role in the modern catering industry due to their ease of storage, transportation, and operation. However, their processing faces several challenges, including labor shortages, inefficient sorting, inadequate cleaning, unsafe cutting processes, and a lack of industry standards.
View Article and Find Full Text PDFInt J Ment Health Nurs
February 2025
Institute of Health and Allied Professions, Nottingham Trent University, Nottingham, UK.
Artificial intelligence (AI) has been increasingly used in delivering mental healthcare worldwide. Within this context, the traditional role of mental health nurses has been changed and challenged by AI-powered cutting-edge technologies emerging in clinical practice. The aim of this integrative review is to identify and synthesise the evidence of AI-based applications with relevance for, and potential to enhance, mental health nursing practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!