Lsh, a chromatin remodeling protein of the SNF2 family, is critical for normal heterochromatin structure. In particular, DNA methylation at repeat elements, a hallmark of heterochromatin, is greatly reduced in Lsh(-/-) (KO) cells. Here, we examined the presumed nucleosome remodeling activity of Lsh on chromatin in the context of DNA methylation. We found that dynamic CG methylation was dependent on Lsh in embryonic stem cells. Moreover, we demonstrate that ATP function is critical for de novo methylation at repeat sequences. The ATP binding site of Lsh is in part required to promote stable association of the DNA methyltransferase 3b with the repeat locus. By performing nucleosome occupancy assays, we found distinct nucleosome occupancy in KO ES cells compared to WT ES cells after differentiation. Nucleosome density was restored to wild-type level by re-expressing wild-type Lsh but not the ATP mutant in KO ES cells. Our results suggest that ATP-dependent nucleosome remodeling is the primary molecular function of Lsh, which may promote de novo methylation in differentiating ES cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330352 | PMC |
http://dx.doi.org/10.1093/nar/gku1371 | DOI Listing |
Inflammation
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Background: DNA methyltransferase 3A (Dnmt3a) is an enzyme that catalyzes the de novo methylation of DNA, and plays essential roles in a wide range of physiological and pathological processes. However, it remains unclear whether Porphyromonas gingivalis affects cementoblasts, the cells responsible for cementum formation, through Dnmt3a.
Methods: The samples were collected from models of mouse periapical lesions and mice of different ages, and the expression of Dnmt3a was detected through immunofluorescence.
NPJ Precis Oncol
January 2025
Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples.
View Article and Find Full Text PDFSemin Reprod Med
January 2025
Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan.
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental contaminants found in human tissues and persist in the environment, posing significant risks to reproductive health. This review examines the impact of PFAS exposure on male reproductive health, with a focus on sperm epigenetics. PFASs disrupt endocrine function by altering key reproductive hormones and impairing sperm motility, quality, and viability.
View Article and Find Full Text PDFGene
January 2025
Department of Epidemiology, School of Public Health, Center of Clinical Epidemiology and Evidence Based Medicine, Shanxi Medical University, Taiyuan, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, China. Electronic address:
Objective: To investigate the relationship between DNA methylation of cord blood apoptosis genes and low birth weight (LBW).
Methods: A case-control study was conducted on 50 pairs of LBW neonates and normal birth weight. Genome-wide methylation assay was performed using Illumina Human Methylation EPIC microarray to analyze the methylation sites of apoptosis-related genes BCL-2, CASP3, and CASP8.
Am J Clin Nutr
January 2025
Department of Family Medicine, University of Virginia, Charlottesville, VA, USA; University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA. Electronic address:
Background: An increasing body of evidence has linked fructose intake to colorectal cancer (CRC). African American (AA) adults consume greater quantities of fructose and are more likely to develop right-side colon cancer than European American (EA) adults.
Objective: We examined the hypothesis that fructose consumption leads to epigenomic and transcriptomic differences associated with CRC tumor biology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!