The infant microbiome development: mom matters.

Trends Mol Med

Division of Translational Medicine, New York University School of Medicine, New York, NY, USA. Electronic address:

Published: February 2015

The infant microbiome plays an essential role in human health and its assembly is determined by maternal-offspring exchanges of microbiota. This process is affected by several practices, including Cesarean section (C-section), perinatal antibiotics, and formula feeding, that have been linked to increased risks of metabolic and immune diseases. Here we review recent knowledge about the impacts on infant microbiome assembly, discuss preventive and restorative strategies to ameliorate the effects of these impacts, and highlight where research is needed to advance this field and improve the health of future generations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464665PMC
http://dx.doi.org/10.1016/j.molmed.2014.12.002DOI Listing

Publication Analysis

Top Keywords

infant microbiome
12
microbiome development
4
development mom
4
mom matters
4
matters infant
4
microbiome plays
4
plays essential
4
essential role
4
role human
4
human health
4

Similar Publications

Interactions of human milk oligosaccharides with the immune system.

Front Immunol

January 2025

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Human milk oligosaccharides (HMOs) are abundant, diverse and complex sugars present in human breast milk. HMOs are well-characterized barriers to microbial infection and by modulating the human microbiome they are also thought to be nutritionally beneficial to the infant. The structural variety of over 200 HMOs, including neutral, fucosylated and sialylated forms, allows them to interact with the immune system in various ways.

View Article and Find Full Text PDF

A gut instinct for childhood leukemia prevention: microbiome-targeting recommendations aimed at parents and caregivers.

Front Public Health

January 2025

Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Centre of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany.

Childhood leukemia accounts for 30% of all pediatric cancer cases with acute lymphoblastic leukemia (ALL) being the most common subtype. Involvement of the gut microbiome in ALL development has recently garnered interest due to an increasing recognition of the key contribution the microbiome plays in maintaining the immune system's homeostatic balance. Commensal gut microbiota provide a first line of defense against different pathogens and gut microbiome immaturity has been implicated in ALL pathogenesis.

View Article and Find Full Text PDF

The fungal microbiota modulate neonatal oxygen-induced lung injury.

Microbiome

January 2025

Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.

Background: The immature lungs of very preterm infants are exposed to supraphysiologic oxygen, contributing to bronchopulmonary dysplasia (BPD), a chronic lung disease that is the most common morbidity of prematurity. While the microbiota significantly influences neonatal health, the relationship between the intestinal microbiome, particularly micro-eukaryotic members such as fungi and yeast, and lung injury severity in newborns remains unknown.

Results: Here, we show that the fungal microbiota modulates hyperoxia-induced lung injury severity in very low birth weight premature infants and preclinical pseudohumanized and altered fungal colonization mouse models.

View Article and Find Full Text PDF

Background: Neonatal mice are frequently used to model diseases that affect human infants. Microbial community composition has been shown to impact disease progression in these models. Despite this, the maturation of the early-life murine microbiome has not been well-characterized.

View Article and Find Full Text PDF

Background: The initial colonization of the infant gut is a complex process that defines the foundation for a healthy microbiome development. is one of the first colonizers of newborns' gut, playing a crucial role in the healthy development of both the host and its microbiome. However, exhibits significant genomic diversity, with subspecies ( subsp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!