Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement.

Cell Mol Life Sci

BVME UMR 7265, Lab Genet Biophys Plantes, Aix Marseille Université, Marseille, 13284, France,

Published: April 2015

Exposure of plants to adverse environmental conditions leads to extensive transcriptional changes. Genome-wide approaches and gene function studies have revealed the importance of chromatin-level control in the regulation of stress-responsive gene expression. Advances in understanding chromatin modifications implicated in plant stress response and identifying proteins involved in chromatin-mediated transcriptional responses to stress are briefly presented in this review. We then highlight how chromatin-mediated gene expression changes can be coupled to the metabolic status of the cell, since many of the chromatin-modifying proteins involved in transcriptional regulation depend on cofactors and metabolites that are shared with enzymes in basic metabolism. Lastly, we discuss the stability and heritability of stress-induced chromatin changes and the potential of chromatin-based strategies for increasing stress tolerance of crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113909PMC
http://dx.doi.org/10.1007/s00018-014-1792-zDOI Listing

Publication Analysis

Top Keywords

stress-induced chromatin
8
chromatin changes
8
gene expression
8
proteins involved
8
changes
4
changes plants
4
plants memories
4
memories metabolites
4
metabolites crop
4
crop improvement
4

Similar Publications

Maize, a vital crop globally, faces significant yield losses due to its sensitivity to cold stress, especially in temperate regions. Understanding the molecular mechanisms governing maize response to cold stress is crucial for developing strategies to enhance cold tolerance. However, the precise chromatin-level regulatory mechanisms involved remain largely unknown.

View Article and Find Full Text PDF

Mitochondrial dysfunction, which can be caused by metabolic stressors such as oxidized low-density lipoprotein (oxLDL), sensitizes the endothelium to pathological changes. The transcription factor interferon regulatory factor 1 (IRF-1) is a master regulator of inflammation, previously shown to promote oxLDL-induced inflammatory pyroptosis in human aortic endothelial cells (HAEC). However, a presumed role for IRF-1 in regulating the intrinsic apoptotic pathway in response to metabolic stress has not been demonstrated.

View Article and Find Full Text PDF

The risk of contamination is expanding with global warming. Targeting the pathogenicity of at its source and diminishing its colonization within the host may be a potential control strategy. Oxidative stress transcription factor AtfA plays a pivotal role in pathogenicity by combating reactive oxygen species (ROS) generated by host immune cells.

View Article and Find Full Text PDF

Glucocorticoid receptor (GR) activation enhances Human alpha-herpes virus 1 (HSV-1) replication and explant-induced reactivation from latency. Furthermore, GR and Krüppel-like factor 15 (KLF15) cooperatively transactivate cis-regulatory modules (CRMs) that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. KLF and specificity protein (Sp) family members bind GC-rich or C-rich sequences and belong to the same super-family of transcription factors.

View Article and Find Full Text PDF

Chronic inflammation and tissue fibrosis are common responses that worsen organ function, yet the molecular mechanisms governing their cross-talk are poorly understood. In diseased organs, stress-induced gene expression changes fuel maladaptive cell state transitions and pathological interaction between cellular compartments. Although chronic fibroblast activation worsens dysfunction in the lungs, liver, kidneys and heart, and exacerbates many cancers, the stress-sensing mechanisms initiating transcriptional activation of fibroblasts are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!