We previously showed that activity of the large conductance calcium-activated potassium (Big-K; BK) channels is suppressed in 3xTg Alzheimer disease (AD) model mice. However, its behavioral significance is not known. In the present report, ventricular injection of the BK channel activator isopimaric acid (ISO) was conducted to examine whether BK channel activation ameliorates cognition in 3xTg mice. The novel object recognition (NOR) test revealed that chronic injection of ISO improved non-spatial memory in 3xTg mice. In the Morris water maze, the probe test demonstrated an improved spatial memory after ISO injection. Electrophysiological underpinnings of the ISO effect were then examined in slices obtained from the mice after behavior. At hippocampal CA1 synapses, the basic synaptic transmission was abnormally elevated and long-term potentiation (LTP) was partially suppressed in 3xTg mice. These were both recovered by ISO treatment. We then confirmed suppressed BK channel activity in 3xTg mice by measuring the half-width of evoked action potentials. This was also recovered by ISO treatment. We previously showed that the recovery of BK channel activity accompanies reduction of neuronal excitability in pyramidal cells. Here again, pyramidal cell excitability, as assessed by calculating the frequency of evoked spikes, was elevated in the 3xTg mouse and was normalized by ISO. ELISA experiments demonstrated an ISO-induced reduction of Aβ1-42 content in hippocampal tissue in 3xTg mice. The present study thus suggests a potential therapeutic utility of BK channel activators for AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2014.12.033DOI Listing

Publication Analysis

Top Keywords

3xtg mice
20
calcium-activated potassium
8
suppressed 3xtg
8
recovered iso
8
iso treatment
8
channel activity
8
3xtg
7
mice
7
iso
7
channel
6

Similar Publications

Oxidative stress is a prominent feature of Alzheimer's disease. Within this context, cholesterol undergoes oxidation, producing the pro-inflammatory product 7-ketocholesterol (7-KC). In this study, we observe elevated levels of 7-KC in the brains of the 3xTg mouse model of AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive impairments in episodic and spatial memory, as well as circuit and network-level dysfunction. While functional impairments in medial entorhinal cortex (MEC) and hippocampus (HPC) have been observed in patients and rodent models of AD, it remains unclear how communication between these regions breaks down in disease, and what specific physiological changes are associated with the onset of memory impairment. We used silicon probes to simultaneously record neural activity in MEC and hippocampus before or after the onset of spatial memory impairment in the 3xTg mouse model of AD pathology.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 6.2 million Americans aged 65 and older, particularly women. Along with AD's main hallmarks (formation of β-amyloid plaques and tau neurofibrillary tangles), there are vascular alterations that occurs in AD pathology.

View Article and Find Full Text PDF

Microglial double stranded DNA accumulation induced by DNase II deficiency drives neuroinflammation and neurodegeneration.

J Neuroinflammation

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.

Background: Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!