Combination of redox-active ligand and lewis acid for dioxygen reduction with π-bound molybdenum-quinonoid complexes.

J Am Chem Soc

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States.

Published: February 2015

A series of π-bound Mo-quinonoid complexes supported by pendant phosphines have been synthesized. Structural characterization revealed strong metal-arene interactions between Mo and the π system of the quinonoid fragment. The Mo-catechol complex (2a) was found to react within minutes with 0.5 equiv of O(2) to yield a Mo-quinone complex (3), H(2)O, and CO. Si- and B-protected Mo-catecholate complexes also react with O(2) to yield 3 along with (R(2)SiO)n and (ArBO)(3) byproducts, respectively. Formally, the Mo-catecholate fragment provides two electrons, while the elements bound to the catecholate moiety act as acceptors for the O(2) oxygens. Unreactive by itself, the Mo-dimethyl catecholate analogue reduces O(2) in the presence of added Lewis acid, B(C(6)F(5))(3), to generate a Mo(I) species and a bis(borane)-supported peroxide dianion, [[(F(5)C(6))(3)B](2)O(2)(2-)], demonstrating single-electron-transfer chemistry from Mo to the O(2) moiety. The intramolecular combination of a molybdenum center, redox-active ligand, and Lewis acid reduces O(2) with pendant acids weaker than B(C(6)F(5))(3). Overall, the π-bound catecholate moiety acts as a two-electron donor. A mechanism is proposed in which O(2) is reduced through an initial one-electron transfer, coupled with transfer of the Lewis acidic moiety bound to the quinonoid oxygen atoms to the reduced O(2) species.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja5100405DOI Listing

Publication Analysis

Top Keywords

lewis acid
12
redox-active ligand
8
ligand lewis
8
catecholate moiety
8
combination redox-active
4
lewis
4
acid dioxygen
4
dioxygen reduction
4
reduction π-bound
4
π-bound molybdenum-quinonoid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!