A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions. | LitMetric

AI Article Synopsis

  • - Understanding how natural organic matter (NOM) and metal ions (like Na(+), Ca(2+), and Mg(2+)) affect the stability of engineered nanoparticles (ENPs) in water is crucial for environmental science.
  • - The study examined how the size (molecular weight) of NOM impacts the aggregation of fullerene nanoparticles (nC60) when treated with different electrolytes, finding that higher molecular weight NOM tends to stabilize nC60 in low salt concentrations but can increase aggregation in high salt environments.
  • - The research highlights that the role of high molecular weight NOM can shift from stabilizing ENPs in monovalent (single-charge) conditions to promoting their attachment in divalent (double-charge)

Article Abstract

Given the wide presence of heterogeneous natural organic matter (NOM) and metal ions (Na(+)/Ca(2+)/Mg(2+)), as well as their significant role in governing nanoparticle stability in aqueous environments, it is of great importance to understand how the molecular weight (MW)-dependent physicochemical properties of NOM impact fundamental transportation processes like the aggregation of engineered nanoparticles (ENPs) in the presence of Na(+)/Ca(2+)/Mg(2+). Here, we report on the aggregation behavior of a model ENP, fullerene nanoparticles (nC60) in the presence of five MW fractions of Suwannee River NOM (Mf-SRNOMs, separated by ultrafiltration techniques) and three electrolytes (NaCl, CaCl2 and MgCl2). We found that in all NaCl treatments and low concentration CaCl2/MgCl2 treatments, the enhancement of nC60 stability positively correlated with the MW of Mf-SRNOMs. Whereas, the stability efficiency of identical Mf-SRNOM in different electrolytes followed an order of NaCl > MgCl2 > CaCl2, and the enhanced attachment of nC60-SRNOM associations was observed in high MW Mf-SRNOM (SRNOM>100 kD and SRNOM 30-100 kD) at high concentration CaCl2/MgCl2. Our results indicate that although the high MW NOM with large humic-like material is the key component for stabilizing nC60 in monovalent electrolyte, it could play a reversed role in promoting the attachment of nC60, especially in long term aggregations and at high concentrations of divalent cations. Therefore, a detailed understanding of the effects of heterogeneous NOM on the aggregation of ENPs should be highly valued, and properly assessed against different cation species and concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2014.12.025DOI Listing

Publication Analysis

Top Keywords

natural organic
8
organic matter
8
fullerene nanoparticles
8
concentration cacl2/mgcl2
8
nom
5
effects molecular
4
molecular weight-dependent
4
weight-dependent physicochemical
4
physicochemical heterogeneity
4
heterogeneity natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!