Metatranscriptomic data contributes another piece of the puzzle to understanding the phylogenetic structure and function of a community of organisms. High-quality total RNA is a bountiful mixture of ribosomal, transfer, messenger and other noncoding RNAs, where each family of RNA is vital to answering questions concerning the hidden microbial world. Software tools designed for deciphering metatranscriptomic data fall under two main categories: the first is to reassemble millions of short nucleotide fragments produced by high-throughput sequencing technologies into the original full-length transcriptomes for all organisms within a sample, and the second is to taxonomically classify the organisms and determine their individual functional roles within a community. Species identification is mainly established using the ribosomal RNA genes, whereas the behavior and functionality of a community is revealed by the messenger RNA of the expressed genes. Numerous chemical and computational methods exist to separate families of RNA prior to conducting further downstream analyses, primarily suitable for isolating mRNA or rRNA from a total RNA sample. In this chapter, we demonstrate a computational technique for filtering rRNA from total RNA using the software SortMeRNA. Additionally, we propose a post-processing pipeline using the latest software tools to conduct further studies on the filtered data, including the reconstruction of mRNA transcripts for functional analyses and phylogenetic classification of a community using the ribosomal RNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-2291-8_17 | DOI Listing |
Microbiome
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, Copenhagen, 2200, Denmark.
Background: Saliva is a protein-rich body fluid for noninvasive discovery of biomolecules, containing both human and microbial components, associated with various chronic diseases. Type-2 diabetes (T2D) imposes a significant health and socio-economic burden. Prior research on T2D salivary microbiome utilized methods such as metagenomics, metatranscriptomics, 16S rRNA sequencing, and low-throughput proteomics.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Department of Molecular Microbiology and Immunology, Institute of Science Tokyo, Tokyo 113-8510, Japan.
Antimicrobial resistance is a major global concern and economic threat, necessitating a reliable monitoring approach to understand its frequency and spread via the environment. Hospital wastewater serves as a critical reservoir for antimicrobial-resistant organisms; however, its role in resistance gene distribution and dissemination remains poorly understood. This study integrates metagenomic and metatranscriptomic analyses, elucidating the dynamics of antimicrobial resistance in hospital wastewater.
View Article and Find Full Text PDFmSystems
December 2024
Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA.
, particularly uncultured representatives, are one of the most abundant microbial groups in coastal salt marshes, dominating the belowground rhizosphere, where over half of plant biomass production occurs. However, this class generally remains poorly understood, particularly in a salt marsh context. Here, novel metagenome-assembled genomes (MAGs) were generated from the salt marsh rhizosphere representing , , JAAYZQ01, B4-G1, JAFGEY01, UCB3, and orders.
View Article and Find Full Text PDFMicrobiome
December 2024
Department of Biochemistry, Western University, Middlesex Drive, London, N6G 2V4, Ontario, Canada.
Background: The application of '-omics' technologies to study bacterial vaginosis (BV) has uncovered vast differences in composition and scale between the vaginal microbiomes of healthy and BV patients. Compared to amplicon sequencing and shotgun metagenomic approaches focusing on a single or few species, investigating the transcriptome of the vaginal microbiome at a system-wide level can provide insight into the functions which are actively expressed and differential between states of health and disease.
Results: We conducted a meta-analysis of vaginal metatranscriptomes from three studies, split into exploratory (n = 42) and validation (n = 297) datasets, accounting for the compositional nature of sequencing data and differences in scale between healthy and BV microbiomes.
mSystems
December 2024
Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark.
Unlabelled: Cable bacteria, filamentous sulfide oxidizers that live in sulfidic sediments, are at times associated with large flocks of swimming bacteria. It has been proposed that these flocks of bacteria transport electrons extracellularly to cable bacteria via an electron shuttle intermediate, but the identity and activity of these bacteria in freshwater sediment remain mostly uninvestigated. Here, we elucidate the electron exchange capabilities of the bacterial community by coupling metagenomics and metatranscriptomics to 16S rRNA amplicon-based correlations with cable bacteria over 155 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!