Investigation on the interactions of scutellarin and scutellarein with bovine serum albumin using spectroscopic and molecular docking techniques.

Arch Pharm Res

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

Published: October 2015

The binding abilities of scutellarin (Scu) and scutellarein (Scue) with bovine serum albumin (BSA) were investigated using equilibrium dialysis, high performance liquid chromatography, fluorescence spectroscopy, competitive site marker and molecular docking. The results showed that the average protein binding ratios of Scu and Scue with BSA were (79.85 ± 1.83) and (85.49 ± 1.21) % respectively. Under simulated physiological conditions, the fluorescence data indicated that Scu and Scue bound with BSA through a static mechanism. The thermodynamic parameters indicated that the interactions of Scu-BSA and Scue-BSA mainly occurred by van der Waals forces and hydrogen bonds and it was easier for Scue to bind with BSA than Scu, indicating that the glucuronic acid molecule in Scu decreased the binding affinity. Site competitive marker experiments showed that the binding sites of Scu and Scue mainly located within the sub-domain IIA of BSA. Furthermore, molecular docking studies indicated that one BSA could bind three Scue, while one BSA could carry only two Scu. All these results clearly indicated the interactions of Scu and Scue with BSA, which will lay the foundation for further research to determine the pharmacology and pharmacodynamics of Scu and Scue for treating ischemic cerebrovascular disease.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-014-0541-zDOI Listing

Publication Analysis

Top Keywords

scu scue
20
molecular docking
12
scue bsa
12
scu
9
bovine serum
8
serum albumin
8
scue
8
bsa
8
indicated interactions
8
investigation interactions
4

Similar Publications

The flavonoid compound scutellarin (Scu) is a traditional Chinese medicine used to treat a variety of diseases; however, the use of scutellarein (Scue), the hydrolysate of Scu, and its mechanisms of action in Alzheimer's disease (AD) have not been fully elucidated. In the present study, the effects of Scue on amyloid β (Aβ)-induced AD-like pathology were investigated. An model of inflammation and an aged rat model were used to confirm the effects of Scue.

View Article and Find Full Text PDF

Substrate stiffness regulates arterial-venous differentiation of endothelial progenitor cells via the Ras/Mek pathway.

Biochim Biophys Acta Mol Cell Res

October 2017

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China. Electronic address:

Cells sense and respond to the biophysical properties of their surrounding environment by interacting with the extracellular matrix (ECM). Therefore, the optimization of these cell-matrix interactions is critical in tissue engineering. The vascular system is adapted to specific functions in diverse tissues and organs.

View Article and Find Full Text PDF

Comparative Metabolomic Analysis of the Neuroprotective Effects of Scutellarin and Scutellarein against Ischemic Insult.

PLoS One

March 2016

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.

For more than thirty years, scutellarin (Scu) has been used in China to clinically treat acute cerebral infarction and paralysis. Scutellarein (Scue), the major Scu metabolite in vivo, exhibits heightened neuroprotective effects when compared to Scu. To explore the neuroprotective role of these compounds, we performed ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UHPLC-QTOF/MS) coupled with a pattern recognition approach to investigate metabolomic differences in a rat model of ischemia after treatment with each compound.

View Article and Find Full Text PDF

Investigation on the interactions of scutellarin and scutellarein with bovine serum albumin using spectroscopic and molecular docking techniques.

Arch Pharm Res

October 2015

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

The binding abilities of scutellarin (Scu) and scutellarein (Scue) with bovine serum albumin (BSA) were investigated using equilibrium dialysis, high performance liquid chromatography, fluorescence spectroscopy, competitive site marker and molecular docking. The results showed that the average protein binding ratios of Scu and Scue with BSA were (79.85 ± 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!