We investigated the ability of quercetin and apigenin to modulate platelet activation and aggregation, and compared the observed efficacy with that displayed by their synthetic analogues 2-phenyl-4H-pyrido[1,2-a]pyrimidin-4-ones, 1-4, and 2,3-diphenyl-4H-pyrido[1,2-a]pyrimidin-4-ones, 5-7. Platelet aggregation was explored through a spectrophotometric assay on platelet-rich plasma (PRP) treated with the thromboxane A2 mimetic U46619, collagen and thrombin in presence/absence of various bioisosteres of flavonoids (12.5-25-50-100 μM). The platelet density, (mean platelet component, MPC), was measured by the Advia 120 Hematology System as a marker surrogate of platelet activation. The induced P-selectin expression, which reflects platelet degranulation/activation, was quantified by flow cytometry on PRP. Our synthetic compounds modulated significantly both platelet activation and aggregation, thus turning out to be more effective than the analogues quercetin and apigenin when tested at a concentration fully consistent with their use in vivo. Accordingly, they might be used as food supplements to increase the efficacy of natural flavonoids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.12.005DOI Listing

Publication Analysis

Top Keywords

platelet activation
16
activation aggregation
12
synthetic analogues
8
platelet
8
food supplements
8
quercetin apigenin
8
analogues flavonoids
4
flavonoids improved
4
improved activity
4
activity platelet
4

Similar Publications

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.

View Article and Find Full Text PDF

Background:  Fibrinolysis is spatiotemporally well-regulated and greatly influenced by activated platelets and coagulation activity. Our previous real-time imaging analyses revealed that clotting commences on activated platelet surfaces, resulting in uneven-density fibrin structures, and that fibrinolysis initiates in dense fibrin regions and extends to the periphery. Despite the widespread clinical use of direct oral anticoagulants (DOACs), their impact on thrombin-dependent activation of thrombin-activatable fibrinolysis inhibitor (TAFI) and fibrinolysis remains unclear.

View Article and Find Full Text PDF

Comorbid diabetes mellitus (DM) in patients with ischemic heart disease (IHD) is a serious factor that significantly impairs the life prognosis and increases the risk of cardiovascular complications (CVC) as well as the likelihood of death. The residual risk of developing CVC in such patients is largely determined by the high thrombotic status, that is associated with hypercoagulation characteristic of DM. Hypercoagulation causes activation of both platelet and coagulation pathways, which leads to an increased susceptibility to thrombosis.

View Article and Find Full Text PDF

Arachidonic acid synergizes with aspirin preventing myocardial ischemia-reperfusion injury and mitigates bleeding risk.

Cardiovasc Res

January 2025

State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Aims: The therapeutic efficacy of coronary revascularization is compromised by myocardial ischemia-reperfusion (MI/R) injury. Higher levels of circulating arachidonic acid (AA) are reportedly associated with lower risk of cardiovascular disease. The cyclooxygenase (COX) pathway metabolizes AA into prostaglandins (PGs) and the platelet-activating thromboxane A2 (TXA2), which is inhibited by aspirin.

View Article and Find Full Text PDF

Association of Systemic Thromboxane Generation With Risk of Developing Heart Failure.

J Am Coll Cardiol

January 2025

Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.

Background: Systemic thromboxane A generation, which is readily assessed by quantifying thromboxane B metabolites (TXB-M) in the urine, is associated with impaired cardiac performance and mortality in aspirin (ASA) users with heart failure (HF).

Objectives: This study sought to determine the association of urinary TXB-M with the risk of developing HF in individuals without prior history of HF and with normal left ventricular function irrespective of ASA use.

Methods: Urine TXB-M were measured by immunoassay and adjusted to urine concentration and renal function (TXB-M) in 2,611 Framingham Heart Study participants (54.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!