Here, D-glucose, D-galactose, and D-lactose non-enzyme quantitative and qualitative analysis method using Cu foam electrode had been investigated. Porous Cu foam material was prepared by electrodeposition strategy, and used as working electrode. Cyclic voltammetry (CV) explained sweetener electro-oxidation process occurring on Cu foam electrode. Amperometric i-t scanning results demonstrated that Cu foam electrode fast responded to D-glucose, D-galactose, and D-lactose in linear concentration range between 0.18 mM and 3.47 mM with significant sensitivity of 1.79 mA cm(-2)mM(-1), 0.57 mA cm(-2)mM(-1), and 0.64 mA cm(-2)mM(-1), respectively. Limit of detection (LOD) was 9.30 μM, 29.40 μM, and 26 μM respectively (S/N=3). Sweetener species was decided by stochastic resonance (SR) signal-to-noise ratio (SNR) eigen peak located noise intensities. Interference experiment results demonstrated that Cu foam electrode selectively responded to sweeteners against interference chemicals. The proposed method provides a promising way for sweetener non-enzyme quantitative and qualitative analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2014.11.148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!