Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To achieve accurate dose calculations in radiation therapy the electron density of patient tissues must be known. This information is ordinarily gained from a computed tomography (CT) image that has been calibrated to allow relative electron density (RED) to be determined from CT number. When high density objects such as metallic prostheses are involved, direct use of the CT data can become problematic due to the artefacts introduced by high attenuation of the beam. This requires manual correction of the density values, however the properties of the implanted prosthetic are not always known. A method is introduced where the RED of such an object can be determined using the treatment beam of a linear accelerator with an electronic portal imaging device. The technique was tested using a metallic hip replacement that was placed within a container of water. Compared to the theoretical RED of 6.8 for cobalt-chromium alloy, these measurements calculated a value of 6.4 ± 0.7. This would allow the distinction of an implant as Co-Cr or steel, which have similar RED, or titanium, which is much less dense with an RED of 3.7.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13246-015-0327-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!