Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464377 | PMC |
http://dx.doi.org/10.1007/s00253-014-6355-6 | DOI Listing |
Cell Rep
December 2024
Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA. Electronic address:
Transcripts of the KRAS locus are alternatively spliced to generate two proteins, KRAS4A and KRAS4B, which differ in their membrane-targeting sequences. These splice variants have been conserved for more than 450 million years, suggesting non-overlapping functions driven by differential membrane association. Here, we use proximity labeling to map the differential interactomes of the KRAS splice variants.
View Article and Find Full Text PDFNat Rev Immunol
December 2024
Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
Lancet Gastroenterol Hepatol
December 2024
Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy. Electronic address:
There is growing interest in the potential exploitation of the gut microbiome as a diagnostic tool in medicine, but evidence supporting its clinical usefulness is scarce. An increasing number of commercial providers offer direct-to-consumer microbiome diagnostic tests without any consensus on their regulation or any proven value in clinical practice, which could result in considerable waste of individual and health-care resources and potential drawbacks in the clinical management of patients. We convened an international multidisciplinary expert panel to standardise best practices of microbiome testing for clinical implementation, including recommendations on general principles and minimum requirements for their provision, indications, pre-testing protocols, method of analyses, reporting of results, and potential clinical value.
View Article and Find Full Text PDFBMC Bioinformatics
December 2024
College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
Can J Psychiatry
December 2024
Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!