The carbon dioxide (CO2) laser is routinely used in glottic microsurgery for the treatment of benign and malignant disease, despite significant collateral thermal damage secondary to photothermal vaporization without thermal confinement. Subsequent tissue response to thermal injury involves excess collagen deposition resulting in scarring and functional impairment. To minimize collateral thermal injury, short-pulse laser systems such as the microsecond pulsed erbium:yttrium-aluminium-garnet (Er:YAG) laser and picosecond infrared laser (PIRL) have been developed. This study compares incisions made in ex vivo human laryngeal tissues by CO2 and Er:YAG lasers versus PIRL using light microscopy, environmental scanning electron microscopy (ESEM), and infrared thermography (IRT). In comparison to the CO2 and Er:YAG lasers, PIRL incisions showed significantly decreased mean epithelial (59.70 µm) and subepithelial (22.15 µm) damage zones (p < 0.05). Cutting gaps were significantly narrower for PIRL (133.70 µm) compared to Er:YAG and CO2 lasers (p < 0.05), which were more than 5 times larger. ESEM revealed intact collagen fibers along PIRL cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 and Er:YAG laser incisions. IRT demonstrated median temperature rise of 4.1 K in PIRL vocal fold incisions, significantly less than for Er:YAG laser cuts (171.85 K; p < 0.001). This study has shown increased cutting precision and reduced lateral thermal damage zones for PIRL ablation in comparison to conventional CO2 and Er:YAG lasers in human glottis and supraglottic tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00405-015-3501-4 | DOI Listing |
Photochem Photobiol
December 2024
Institute of Chemistry, State University of Campinas, Campinas, São Paulo, Brazil.
Given that non-equilibrium molecular motion in thermal gradients is influenced by both solute and solvent, the application of spectroscopic methods that probe each component in a binary mixture can provide insights into the molecular mechanisms of thermal diffusion for a large class of systems. In the present work, we use an all-optical setup whereby near-infrared excitation of the solvent leads to a steady-state thermal gradient in solution, followed by characterization of the non-equilibrium system with electronic spectroscopy, imaging, and intensity. Using rhodamine B in water as a case study, we perform measurements as a function of solute concentration, temperature, wavelength, time, near-infrared laser power, visible excitation wavelength, and isotope effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
In sodium-ion batteries (SIBs), the performance of a single solvent often does not meet actual requirements and a cosolvent or nonsolvating solvent is needed. However, the effect of these electrolyte additives on the solvation structure and dynamics of Na in SIBs is yet to be fully understood. Herein, electrolyte structural dynamics are examined for NaPF in dimethyl carbonate (DMC) with 1,1,2,2-tetrafluoro-2,2,2-trifluoroethoxy ethane (HFE) as the nonsolvating solvent or propylene carbonate (PC) as the cosolvent using steady-state and time-resolved infrared (IR) spectroscopies.
View Article and Find Full Text PDFNanophotonics
November 2024
College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China.
Ultrafast all-optical control has been a subject of wide-spread attention as a method of manipulating optical fields using light excitation on extremely short time scales. As a fundamental form of ultrafast all-optical control, all-optical switching has achieved sub-picosecond switch speeds in the visible, infrared, and terahertz spectral regions. However, due to the lack of suitable materials, ultrafast all-optical control in the ultraviolet range remains in its early stages.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Laboratoire d'Optique Appliquée, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91761 Palaiseau, France.
In this article, we study electron dynamics in HgTe quantum dots with a 1.9 μm gap, a material relevant for infrared sensing and emission, using ultrafast spectroscopy with 35 fs time resolution. Experiments have been carried out at several probing photon energies around the gap, which allows us to follow the relaxation path of the photoexcited electrons.
View Article and Find Full Text PDFACS Phys Chem Au
November 2024
Department of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!