Patients with peripheral artery disease (PAD) develop a myopathy in their ischemic lower extremities, which is characterized by myofiber degeneration, mitochondrial dysfunction and impaired limb function. Desmin, a protein of the cytoskeleton, is central to maintenance of the structure, shape and function of the myofiber and its organelles, especially the mitochondria, and to translation of sarcomere contraction into muscle contraction. In this study, we investigated the hypothesis that disruption of the desmin network occurs in gastrocnemius myofibers of PAD patients and correlates with altered myofiber morphology, mitochondrial dysfunction, and impaired limb function. Using fluorescence microscopy, we evaluated desmin organization and quantified myofiber content in the gastrocnemius of PAD and control patients. Desmin was highly disorganized in PAD but not control muscles and myofiber content was increased significantly in PAD compared to control muscles. By qPCR, we found that desmin gene transcripts were increased in the gastrocnemius of PAD patients as compared with control patients. Increased desmin and desmin gene transcripts in PAD muscles correlated with altered myofiber morphology, decreased mitochondrial respiration, reduced calf muscle strength and decreased walking performance. In conclusion, our studies identified disruption of the desmin system in gastrocnemius myofibers as an index of the myopathy and limitation of muscle function in patients with PAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4374059 | PMC |
http://dx.doi.org/10.1369/0022155415569348 | DOI Listing |
Cells
January 2025
Chongqing Academy of Animal Science, Chongqing 402460, China.
Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles.
View Article and Find Full Text PDFFASEB Bioadv
January 2025
Department of Chemistry, Graduate School of Science Chiba University Chiba Japan.
Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.
View Article and Find Full Text PDFEur J Appl Physiol
January 2025
Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, USA.
Physical activity (PA) and exercise elicit adaptations and physiological responses in skeletal muscle, which are advantageous for preserving health and minimizing chronic illnesses. The complicated atmosphere of the exercise response can be attributed to hereditary and environmental variables. The primary cause of these adaptations and physiological responses is the transcriptional reactions that follow exercise, whether endurance- (ET) or resistance- training (RT).
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: Myoblasts serve as the fundamental building blocks of muscle fibers, and there is a positive correlation between the diameter of myofibers during the juvenile phase and the rate of muscle growth, which does not change in adulthood. However, the molecular mechanisms governing myofiber diameter across various developmental stages in goats remain largely unclear.
Results: In this study, we examined miRNA expression in the longissimus dorsi muscle tissue of goats at two distinct ages: one month, a period characterized by robust muscle growth, and nine months, when muscle development plateaus in adulthood.
Sci Adv
January 2025
Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA.
Animals requiring purposeful movement for survival are endowed with mechanoreceptors, called proprioceptors, that provide essential sensory feedback from muscles and joints to spinal cord circuits, which modulates motor output. Despite the essential nature of proprioceptive signaling in daily life, the mechanisms governing proprioceptor activity are poorly understood. Here, we identified nonredundant roles for two voltage-gated sodium channels (Nas), Na1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!