Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work proposes a sequential methodology for selecting variables in classification problems in which the number of predictors is much larger than the sample size. The methodology includes a Monte Carlo permutation procedure that conditionally tests the null hypothesis of no association among the outcomes and the available predictors. In order to improve computing aspects, we propose a new parametric distribution, the Truncated and Zero Inflated Gumbel Distribution. The final application is to find compact classification models with improved performance for genomic data. Results using real data sets show that the proposed methodology selects compact models with optimized classification performances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0962280214566262 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!