CODAS syndrome is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. Using whole-exome and Sanger sequencing, we identified four LONP1 mutations inherited as homozygous or compound-heterozygous combinations among ten individuals with CODAS syndrome. The individuals come from three different ancestral backgrounds (Amish-Swiss from United States, n = 8; Mennonite-German from Canada, n = 1; mixed European from Canada, n = 1). LONP1 encodes Lon protease, a homohexameric enzyme that mediates protein quality control, respiratory-complex assembly, gene expression, and stress responses in mitochondria. All four pathogenic amino acid substitutions cluster within the AAA(+) domain at residues near the ATP-binding pocket. In biochemical assays, pathogenic Lon proteins show substrate-specific defects in ATP-dependent proteolysis. When expressed recombinantly in cells, all altered Lon proteins localize to mitochondria. The Old Order Amish Lon variant (LONP1 c.2161C>G[p.Arg721Gly]) homo-oligomerizes poorly in vitro. Lymphoblastoid cell lines generated from affected children have (1) swollen mitochondria with electron-dense inclusions and abnormal inner-membrane morphology; (2) aggregated MT-CO2, the mtDNA-encoded subunit II of cytochrome c oxidase; and (3) reduced spare respiratory capacity, leading to impaired mitochondrial proteostasis and function. CODAS syndrome is a distinct, autosomal-recessive, developmental disorder associated with dysfunction of the mitochondrial Lon protease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289676PMC
http://dx.doi.org/10.1016/j.ajhg.2014.12.003DOI Listing

Publication Analysis

Top Keywords

codas syndrome
16
lon protease
12
developmental disorder
8
lon proteins
8
lon
6
codas
4
syndrome associated
4
associated mutations
4
lonp1
4
mutations lonp1
4

Similar Publications

Association of LONP1 gene with epilepsy and the sub-regional effect.

Sci Rep

October 2024

Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Department of Neurology of the Second Affiliated Hospital, Institute of Neuroscience, Guangzhou Medical University, Ministry of Education of China, Guangzhou, China.

The LONP1 gene encodes Lon protease, which is responsible for degrading damaged or misfolded proteins and binding mitochondrial DNA. Previously, LONP1 variants have been identified in patients with cerebral, ocular, dental, auricular, and skeletal anomalies (CODAS syndrome) and mitochondrial diseases. Seizures were occasionally observed.

View Article and Find Full Text PDF

The first case report of CODAS syndrome in Chinese population caused by two pathogenic mutations.

Front Genet

January 2023

Department of Cardiology, Hunan Provincial People's Hospital, The First Afliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, China.

CODAS syndrome (MIM 600373) is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. CODAS syndrome is rare in the world and no cases have been reported in Chinese population so far. Mutations in the gene can contribute to CODAS syndrome, while the underlying molecular mechanisms requires further investigation.

View Article and Find Full Text PDF

CODAS syndrome (cerebral, ocular, dental, auricular, skeletal anomalies) is a rare autosomal recessive inherited multisystemic disease that carries an incidence rate of less than 1 in 1,000,000 children worldwide. It has an infancy, neonatal age of onset, characterized by deformities of the central nervous system, eyes, ears, teeth, and skeleton. A 1-year-old female of non-consanguineous parents, first time presented to our pediatrics clinic on November 6, 2021 when she was 4 months of age with developmental delay, as the patient could not support her head and made no eye contact on examination.

View Article and Find Full Text PDF
Article Synopsis
  • EVEN-PLUS syndrome is a rare genetic disorder caused by mutations in the HSPA9 gene, which encodes the mitochondrial chaperone mortalin.
  • It shares similarities with CODAS syndrome and is marked by conditions affecting the bones (Epiphyses and Vertebrae) and certain features of the ears and nose.
  • The study expands the understanding of EVEN-PLUS syndrome by reporting two siblings with milder symptoms and unique genetic variants, along with confirming a previously reported mutation in a different condition called EVE dysplasia.
View Article and Find Full Text PDF

The mitochondrial protein LonP1 is an ATP-dependent protease that mitigates cell stress and calibrates mitochondrial metabolism and energetics. Biallelic mutations in the LONP1 gene are known to cause a broad spectrum of diseases, and LonP1 dysregulation is also implicated in cancer and age-related disorders. Despite the importance of LonP1 in health and disease, specific inhibitors of this protease are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!