Follistatin alleviates synovitis and articular cartilage degeneration induced by carrageenan.

Int J Inflam

Department of Joint Surgery and Sports Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan ; Department of Cartilage Regeneration, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan ; International Research Center for Molecular Science in Tooth and Bone Diseases (Global Center of Excellence Program), Tokyo Medical and Dental University, Tokyo 113-8519, Japan.

Published: January 2015

Activins are proinflammatory cytokines which belong to the TGFβ superfamily. Follistatin is an extracellular decoy receptor for activins. Since both activins and follistatin are expressed in articular cartilage, we hypothesized that activin-follistatin signaling participates in the process of joint inflammation and cartilage degeneration. To test this hypothesis, we examined the effects of follistatin in a carrageenan-induced mouse arthritis model. Synovitis induced by intra-articular injection of carrageenan was significantly alleviated by preinjection with follistatin. Macrophage infiltration into the synovial membrane was significantly reduced in the presence of follistatin. In addition, follistatin inhibited proteoglycan erosion induced by carrageenan in articular cartilage. These data indicate that activin-follistatin signaling is involved in joint inflammation and cartilage homeostasis. Our data suggest that follistatin can be a new therapeutic target for inflammation-induced articular cartilage degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4276300PMC
http://dx.doi.org/10.1155/2014/959271DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
cartilage degeneration
12
follistatin
8
induced carrageenan
8
activin-follistatin signaling
8
joint inflammation
8
inflammation cartilage
8
cartilage
6
follistatin alleviates
4
alleviates synovitis
4

Similar Publications

Knee osteoarthritis (KOA) represents a progressive degenerative disorder characterized by the gradual erosion of articular cartilage. This study aimed to develop and validate biomarker-based predictive models for KOA diagnosis using machine learning techniques. Clinical data from 2594 samples were obtained and stratified into training and validation datasets in a 7:3 ratio.

View Article and Find Full Text PDF

A Lu-nucleotide coordination polymer-incorporated thermosensitive hydrogel with anti-inflammatory and chondroprotective capabilities for osteoarthritis treatment.

Biomaterials

January 2025

Department of Nuclear Medicine, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Biological Nanotechnology, NHC, No. 87 Xiangya Road, Changsha, Hunan, 410008, China. Electronic address:

Osteoarthritis (OA) is a prevalent and debilitating condition characterized by cartilage destruction and inflammation. Traditional pharmacotherapies for OA are limited by their short-term efficacy and systemic side effects. Radiosynoviorthesis (RSO), involving intra-articular injection of radiopharmaceuticals, has shown promise for OA treatment but is hindered by the toxicity and rapid clearance of radioisotopes.

View Article and Find Full Text PDF

Background: This study aimed to investigate the impact of AM1241 on lipopolysaccharide (LPS)-induced chondrocyte inflammation in mice and its potential mechanism for improving osteoarthritis (OA).

Methods: The OA mice model was established employing the refined Hulth method. The impact of different concentrations of AM1241 on mice chondrocyte activity was detected using CCK-8.

View Article and Find Full Text PDF

Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease that causes chronic pain and joint dysfunction. However, the current understanding of TMJOA pathogenesis is limited and necessitates further research. Animal models are crucial for investigating TMJOA due to the scarcity of clinical samples.

View Article and Find Full Text PDF

Advancement of 3D biofabrication in repairing and regeneration of cartilage defects.

Biofabrication

January 2025

Department of Orthopaedics, Tangdu Hospital Fourth Military Medical University, 569 Xinsi Road, Baqiao District, Xi 'an City, Xi'an, Shaanxi, 710038, CHINA.

Three-dimensional (3D) bioprinting, an additive manufacturing technology, fabricates biomimetic tissues that possess natural structure and function. It involves precise deposition of bioinks, including cells, and bioactive factors, on basis of computer-aided 3D models. Articular cartilage injurie, a common orthopedic issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!