Biological enrichment analysis using gene ontology (GO) provides a global overview of the functional role of genes or proteins identified from large-scale genomic or proteomic experiments. Phenomic enrichment analysis of gene lists can provide an important layer of information as well as cellular components, molecular functions, and biological processes associated with gene lists. Plant phenomic enrichment analysis will be useful for performing new experiments to better understand plant systems and for the interpretation of gene or proteins identified from high-throughput experiments. Plant ontology (PO) is a compendium of terms to define the diverse phenotypic characteristics of plant species, including plant anatomy, morphology, and development stages. Adoption of this highly useful ontology is limited, when compared to GO, because of the lack of user-friendly tools that enable the use of PO for statistical enrichment analysis. To address this challenge, we introduce Plant Ontology Enrichment Analysis Server (POEAS) in the public domain. POEAS uses a simple list of genes as input data and performs enrichment analysis using Ontologizer 2.0 to provide results in two levels, enrichment results and visualization utilities, to generate ontological graphs that are of publication quality. POEAS also offers interactive options to identify user-defined background population sets, various multiple-testing correction methods, different enrichment calculation methods, and resampling tests to improve statistical significance. The availability of such a tool to perform phenomic enrichment analyses using plant genes as a complementary resource will permit the adoption of PO-based phenomic analysis as part of analytical workflows. POEAS can be accessed using the URL http://caps.ncbs.res.in/poeas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274039 | PMC |
http://dx.doi.org/10.4137/BBI.S19057 | DOI Listing |
Microb Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02000, Türkiye.
This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.
View Article and Find Full Text PDFHereditas
January 2025
Emergency Department, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang Province, China.
Endometriosis is a complex gynecological condition characterized by abnormal immune responses. This study aims to explore the immunomodulatory effects of monoterpene glycosides from Paeonia lactiflora on endometriosis. Using the ssGSEA algorithm, we assessed immune cell infiltration levels between normal and endometriosis groups.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!