We investigate the vibrational predissociation dynamics of the hydrogen-bonded 3-aminophenol-ammonia cluster (3-AP-NH3) in the OH and NH stretching regions. Vibrational excitation provides enough energy to dissociate the cluster into its constituent 3-AP and NH3 monomers, and we detect the 3-AP fragments via (1 + 1) resonance-enhanced multiphoton ionization (REMPI). The distribution of vibrational states of the 3-AP fragment suggests the presence of two distinct dissociation pathways. The first dissociation channel produces a broad, unstructured feature in the REMPI-action spectrum after excitation of any of the OH or NH stretching vibrations, pointing to a nearly statistical dissociation pathway with extensive coupling among the vibrations in the cluster during the vibrational predissociation. The second dissociation channel produces distinct, resolved features on top of the broad feature but only following excitation of the OH or symmetric NH3 stretch in the cluster. This striking mode-specificity is consistent with strong coupling of these two modes to the dissociation coordinate (the O-H⋯N bond). The presence of clearly resolved transitions to the electronic origin and to the 10a(2) + 10b(2) state of the cis-3-AP isomer shows that vibrational excitation is driving the isomerization of the trans-3-AP-NH3 isomer to the cis-3-AP-NH3 isomer in the course of the dissociation.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4904893DOI Listing

Publication Analysis

Top Keywords

vibrational predissociation
12
vibrational excitation
8
dissociation channel
8
channel produces
8
vibrational
6
dissociation
6
predissociation vibrationally
4
vibrationally induced
4
induced isomerization
4
isomerization 3-aminophenol-ammonia
4

Similar Publications

The dicarbon molecule, C, is one of the most important diatomic species in various gaseous environments. Despite extensive spectroscopic studies in the last two centuries, the radiative and photodissociative properties of C in its highly excited electronic states are still largely unexplored, particularly in the short vacuum ultraviolet (VUV) region. In this study, the lifetimes of C for rotational levels in the recently identified 1Σ state up to the vibrational level ν' = 4 and in the Σ state up to ν' = 2 are measured for the first time with a VUV-pump-UV-probe photoionization scheme.

View Article and Find Full Text PDF

Photofragmentation and fragment analysis; Coriolis interactions in excited states of CH.

Phys Chem Chem Phys

November 2024

Science Faculty, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.

Methyl radicals in their ground state (CH(X)) were created and excited by two- and one- color excitation schemes for CHBr and CHI, respectively, to record (2+1) REMPI spectra of CH for resonant transitions to the Rydberg states CH**(pA); = 3, 4. Various new and previously observed vibrational bands were identified and analyzed to gain energetic information for the Rydberg states. Particular emphasis was placed on analysis of the rotational structured spectra centered at 70 648 and 60 700 cm, due to transitions from to and for both Rydberg states, respectively.

View Article and Find Full Text PDF

The topology of multidimensional potential energy surfaces defines the bimolecular collision outcomes of open-shell radicals with molecular partners. Understanding these surfaces is crucial for predicting the inelastic scattering and chemical transformations of increasingly complex radical-molecule collisions. To characterize the inelastic scattering mechanisms of nitric oxide (NO) radicals with large alkanes, we generated the collision complexes comprised of NO with propane or -butane.

View Article and Find Full Text PDF

An automatic variable laser power attenuator for continuous-wave quantum cascade lasers in cryogenic ion vibrational predissociation spectroscopy.

Rev Sci Instrum

September 2024

Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.

Cryogenic ion vibrational predissociation (CIVP) spectroscopy is an established and valuable technique for molecular elucidation in the gas phase. CIVP relies on tunable lasers, wherein among typical laser schemes, the application of mid-infrared continuous-wave quantum cascade laser (cw-QCL) is the most robust and elegant solution, as we have recently demonstrated. However, potential challenges arise from an inhomogeneous character across laser power tuning curves.

View Article and Find Full Text PDF

The radiative and photodissociative properties of the dicarbon molecule, C, in high-lying electronic states are of utmost importance for modeling the photochemical processes that occur in various astronomical environments. Despite extensive spectroscopic studies in the last two centuries, the photodissociation properties of C are still largely unknown, particularly for quantum states in the vacuum ultraviolet (VUV) region. Here, the lifetimes of C for each individual rovibrational level in the recently identified 2Σ state are measured for the first time using a VUV-pump-UV-probe photoionization scheme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!