In spite of the recent advents in parallel algorithms and computer hardware, high-level calculation of vibrational spectra of large molecules is still an uphill task. To overcome this, significant effort has been devoted to the development of new algorithms based on fragmentation methods. The present work provides the details of an efficient and accurate procedure for computing the vibrational spectra of large clusters employing molecular tailoring approach (MTA). The errors in the Hessian matrix elements and dipole derivatives arising due to the approximation nature of MTA are reduced by grafting the corrections from a smaller basis set. The algorithm has been tested out for obtaining vibrational spectra of neutral and charged water clusters at Møller-Plesset second order level of theory, and benchmarking them against the respective full calculation (FC) and/or experimental results. For (H2O)16 clusters, the estimated vibrational frequencies are found to differ by a maximum of 2 cm(-1) with reference to the corresponding FC values. Unlike the FC, the MTA-based calculations including grafting procedure can be performed on a limited hardware, yet take a fraction of the FC time. The present methodology, thus, opens a possibility of the accurate estimation of the vibrational spectra of large molecular systems, which is otherwise impossible or formidable.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4905004DOI Listing

Publication Analysis

Top Keywords

vibrational spectra
20
spectra large
12
molecular tailoring
8
tailoring approach
8
water clusters
8
spectra
5
vibrational
5
accurate vibrational
4
spectra molecular
4
approach case
4

Similar Publications

Raman Signature of Stripe Domains in Monolayer WMoS Alloys.

ACS Appl Mater Interfaces

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

We study the Raman signature of stripe domains in monolayer WMoS alloys, characterized using experimental techniques and density functional theory (DFT) calculations. These stripe domains were found in star-shaped monolayer WS exhibiting a high concentration of molybdenum (Mo) atoms in its central region, and unique Raman peaks that were not previously reported. We attribute these peaks to the splitting of the original doubly degenerate E modes, arising from the lower symmetry of the W-Mo stripe domains.

View Article and Find Full Text PDF

Two-dimensional infrared (2D IR) spectroscopy is a powerful technique for measuring molecular heterogeneity and dynamics with a high spatiotemporal resolution. The methods can be applied to characterize specific residues of proteins by incorporating frequency-resolved vibrational labels. However, the time scale of dynamics that 2D IR spectroscopy can measure is limited by the vibrational label's excited-state lifetime due to the decay of 2D IR absorption bands.

View Article and Find Full Text PDF

Electronic spectra for OThF have been recorded using fluorescence excitation and two-photon resonantly enhanced ionization techniques. Multiple vibronic bands were observed in the 340-460 nm range. Dispersed fluorescence spectra provided ground state vibrational constants and evidence of extensive vibronic state mixing at higher excitation energies.

View Article and Find Full Text PDF

Introduction: Vocal distortion, also known as a scream or growl, is used worldwide as an essential technique in singing, especially in rock and metal, and as an ethnic voice in Mongolian singing. However, the production mechanism of vocal distortion is not yet clearly understood owing to limited research on the behavior of the larynx, which is the source of the distorted voice.

Objectives: This study used high-speed digital imaging (HSDI) to observe the larynx of professional singers with exceptional singing skills and determine the laryngeal dynamics in the voice production of various vocal distortions.

View Article and Find Full Text PDF

Spectroscopic characterization of radicals formed by hydrogen-atom abstraction from γ-valerolactone and γ-butyrolactone.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary; Centre for Astrophysics and Space Science, ELTE Eötvös Loránd University, PO Box 32, H-1518 Budapest, Hungary. Electronic address:

γ-valerolactone (GVL) and its unmethylated counterpart, γ-butyrolactone (GBL), are important compounds with a wide range of potential uses. For example, GVL is proposed as an ideal alternative renewable energy source, while GBL can be utilized as an electrolyte. Understanding the combustion mechanisms of these compounds is crucial for optimizing their use as energy sources and monitoring the products formed during combustion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!