Production of a high level of laccase by submerged fermentation at 120-L scale of Cerrena unicolor C-139 grown on wheat bran.

C R Biol

Laboratoire de physiologie et écologie microbienne, faculté des sciences, École interfacultaire des bioingénieurs, Université libre de Bruxelles, c/o ISP, 642, rue Engeland, 1180 Brussels, Belgium; École polytechnique, Université libre de Bruxelles, 50, avenue Franklin-Roosevelt, 1050 Brussels, Belgium.

Published: February 2015

Submerged fermentation in a stirred bioreactor of the white rot fungus Cerrena unicolor C-139 was done at a 120-L scale in the presence of wheat bran as a cheap lignocellulosic substrate for fungus growth and laccase production. Enzyme monitoring showed that laccase production started after 2 days of cultivation, attaining a maximum activity of 416.4 U·mL(-1) at day 12 of fermentation. After treatment of culture liquid by successive micro- and ultrafiltration (5kDa), a liquid concentrate containing 22203176 units of laccase was obtained. Obtaining large amount of laccase is essential for various industrial applications, including detoxification of industrial effluents, textile and petrochemical industries, polymer synthesis, bioremediation of contaminated area, stabilization of beverages, production of cosmetics, manufacture of anti-cancer drugs, and nanobiotechnology. The cultivation method and the fungal strain used here provided a substantial amount of enzyme produced at a price lower than 0.01 € cent/unit enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.crvi.2014.12.001DOI Listing

Publication Analysis

Top Keywords

submerged fermentation
8
120-l scale
8
cerrena unicolor
8
unicolor c-139
8
wheat bran
8
laccase production
8
laccase
5
production
4
production high
4
high level
4

Similar Publications

Lactate dehydrogenase plays a key role in alleviating hypoxia during prolonged submergence. To explore the function of the OsLdh7 gene in enhancing submergence tolerance, we overexpressed this gene in rice (Oryza sativa cv. IR64) and subjected the transgenic lines to complete inundation.

View Article and Find Full Text PDF

This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis.

View Article and Find Full Text PDF

Gellan-amino acid hydrogel-based bioreactor for optimizing the production of yeast metabolites.

Carbohydr Polym

March 2025

Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Hydrogels mimic natural environments due to their hydrated, polymeric networks which are beneficial for microorganism growth. The substantial water content maintains a consistently moist environment, and porous structure of hydrogel promotes efficient nutrient transfer and cell distribution, offering advantages over traditional liquid bioreactors. While their application in cell immobilization for bioconversion is well-known, their use as a solid-state fermentation matrix remains unexplored.

View Article and Find Full Text PDF

Edible mushrooms have been used as sustainable sources of proteases of industrial interest. The aim of this research was to investigate the influence of different culture media on mycelial growth and the potential of an Amazonian mushroom species, Auricularia fuscosuccinea DPUA 1624, in the biosynthesis of bovine milk coagulant enzymes. The species was cultivated on Sabouraud agar, malt, glucose, and peptone agar, malt extract agar, and glucose and peptone agar, supplemented with yeast extract for mycelial development.

View Article and Find Full Text PDF

Food waste (FW) is a common source of contamination, contaminating both soils and water bodies by releasing greenhouse gases. FW holds great potential for biofuel and bioproduct production, which can mitigate its environmental impact and become a valuable addition to the circular bioeconomy. Therefore, this work aimed to investigate the use of food waste as a substrate to produce fermentable sugars and bioethanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!