The endocannabinoid (EC) system regulates bone mass. Because cannabis use during pregnancy results in stature shorter than normal, we examined the role of the EC system in skeletal elongation. We show that CB1 and CB2 cannabinoid receptors are expressed specifically in hypertrophic chondrocytes of the epiphyseal growth cartilage (EGC), which drives vertebrate growth. These cells also express diacylglycerol lipases, critical biosynthetic enzymes of the main EC, and 2-arachidonoylglycerol (2-AG), which is present at significant levels in the EGC. Femora of CB1- and/or CB2-deficient mice at the end of the rapid growth phase are longer compared to wild-type (WT) animals. We find that Δ(9) -tetrahydrocannabinol (THC) slows skeletal elongation of female WT and CB2-, but not CB1-, deficient mice, which is reflected in femoral and lumbar vertebral body length. This in turn results in lower body weight, but unaltered fat content. THC inhibits EGC chondrocyte hypertrophy in ex vivo cultures and reduces the hypertrophic cell zone thickness of CB1-, but not CB2-, deficient mice. These results demonstrate a local growth-restraining EC system in the EGC. The relevance of the present findings to humans remains to be studied.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.12642DOI Listing

Publication Analysis

Top Keywords

cannabinoid receptors
8
skeletal elongation
8
deficient mice
8
cb1 cannabinoid
4
receptors mediate
4
mediate endochondral
4
endochondral skeletal
4
growth
4
skeletal growth
4
growth attenuation
4

Similar Publications

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

While benzodiazepines have been a mainstay of the pharmacotherapy of anxiety disorders, their short-term efficacy and risk of abuse have driven the exploration of alternative treatment approaches. The endocannabinoid (eCB) system has emerged as a key modulator of anxiety-related processes, with evidence suggesting dynamic interactions between the eCB system and the GABAergic system, the primary target of benzodiazepines. According to the existing literature, the activation of the cannabinoid receptors has been shown to exert anxiolytic effects, while their blockade or genetic deletion results in heightened anxiety-like responses.

View Article and Find Full Text PDF

2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.

View Article and Find Full Text PDF

Navelina oranges () are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels.

View Article and Find Full Text PDF

Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!