As part of a program of preparing metal complexes which exhibit unique affinities towards different DNA structures, we have synthesised the novel Schiff base complex N,N'-bis-4-(hydroxysalicylidine)meso-diphenylethylenediaminenickel(ii) (), via the reaction of meso-1,2-diphenylethylenediamine and 2,4-dihydroxybenzaldehyde. This compound was subsequently reacted with 1-(2-chloroethyl)piperidine or 1-(2-chloropropyl)piperidine, to afford the alkylated complexes N,N'-bis-(4-((1-(2-ethyl)piperidine)oxy)salicylidine)meso-1,2-diphenylethylenediaminenickel(ii) () and N,N'-bis-(4-((1-(3-propyl)piperidine)oxy)-salicylidine)meso-1,2-diphenylethylenediaminenickel(ii) (), respectively. These complexes were characterised by microanalysis and X-ray crystallography in the solid state, and in solution by (1)H and (13)C NMR spectroscopy. Electrospray ionisation mass spectrometry (ESI-MS) was used to confirm the identity of () and (). The affinities of () and () towards a discrete 16 mer duplex DNA molecule, and examples of both tetramolecular and unimolecular DNA quadruplexes, was explored using a variety of techniques. In addition, the affinity of two other complexes () and (), towards the same DNA molecules was examined. Complexes () and () were prepared by methods analogous to those which afforded () and (), however 1,2-phenylenediamine was used instead of meso-1,2-diphenylethylenediamine in the initial step of the synthetic procedure. The results of ESI-MS and DNA melting temperature measurements suggest that () and () exhibit a lower affinity than () and () towards the 16 mer duplex DNA molecule, while circular dichroism (CD) spectroscopy suggested that none of the four complexes had a major effect on the conformation of the nucleic acid. In contrast, ESI-MS and CD spectroscopy suggested that both () and () show significant binding to a tetramolecular DNA quadruplex. The results of ESI-MS and Fluorescence Resonance Energy Transfer (FRET) assays indicated that () and () did not bind as tightly to a unimolecular DNA quadruplex, although both complexes had a major effect on the CD spectrum of the latter. These results highlight that the presence of the meso-1,2-diphenylethylenediamine moiety in metal complexes of this type may provide a general method for instilling selectivity for some DNA quadruplexes over dsDNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt02926g | DOI Listing |
J Org Chem
December 2024
Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung 804201, Taiwan.
This paper presents a copper(I)-catalyzed intramolecular tandem acylation/-arylation of methyl 2-[2-(2-bromophenyl)acetamido]benzoates for the synthesis of benzofuro[3,2-]quinolin-6(5)-ones under mild conditions. The combination of CuI, 1,10-phenanthroline, and KCO in DMSO was found to be the optimal reaction condition, producing the target products in high yields (84-99%) at 70 °C for 16 h. The tandem reaction was applicable to substrates bearing halo, electron-withdrawing, and electron-donating groups at their phenyl moieties with a broad substrate scope.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
A novel detection technique is introduced that offers sensitive and reliable ochratoxin A (OTA) detection. The method leverages the etching of gold nanorods (AuNRs) stabilized by hexadecyl trimethyl ammonium bromide (CTAB) using the oxidized form of 3,3',5,5'-tetramethyl benzidine sulfate (TMB), creating a susceptible multicolor visual detection system for OTA. The visual detection is enabled by Mg-assisted DNAzyme catalysis combined with the catalytic hairpin assembly (CHA) signal amplification strategy.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2024
Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, Harbin, PR China. Electronic address:
The telomeric G-quadruplex (G4) along with the telomerase catalytic subunit hTERT are crucial in the extension of telomeres. Tumor cells can establish replicative immortality by activating the telomere-maintenance mechanism (TMM).Small molecule ligands can limit cancer telomere lengthening by by targeting at G4 and hTERT.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea.
The amber-OL21 force field (ff) was developed to better describe noncanonical DNA, including Z-DNA. Despite its improvements for DNA simulations, this study found that OL21's scope of application was limited by embedded ff artifacts. In a benchmark set of seven DNA molecules, including two double-stranded DNAs transitioning between B- and Z-DNA and five single-stranded DNAs folding into mini-dumbbell or G-quadruplex structures, the free energy landscapes obtained using OL21 revealed several issues: Z-DNA was overly stabilized; misfolded states in mini-dumbbell DNAs were most stable; DNA GQ folding was consistently biased toward an antiparallel topology.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
G-quadruplexes (G4s), as an important type of non-canonical nucleic acid structure, have received much attention because of their regulations of various biological processes in cells. Identifying G4s-protein interactions is essential for understanding G4s-related biology. However, current strategies for exploring G4 binding proteins (G4BPs) include pull-down assays in cell lysates or photoaffinity labeling, which are lack of sufficient spatial specificity at the subcellular level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!