Titanium dioxide nanoparticles (TiO2 NPs) have a wide range of applications in many fields (paint, industry, medicine, additives in food colorants, and nutritional products). Over the past decade research, TiO2 NPs have been focused on the potential toxic effects of these useful materials. In the present study, we investigated the effects of subacute exposure to TiO2 NPs on emotional behavior in adult Wistar rats, the biochemical parameters, and the histology of organs. Animals were injected intraperitoneally (ip) with TiO2 NPs (20 mg/kg body weight) every 2 days for 20 days. The elevated plus-maze test showed that subacute TiO2 NPs treatment increased significantly the anxious index (AI) compared to control group. The toxicological parameters were assessed 24 h and 14 days after the last injection of TiO2 NPs. Subacute exposure to nanoparticles increased the AST/ALT enzyme ratio and LDH activity. However, the blood cell count remained unchanged, except the platelet count increase. Histological examination showed a little inflammation overall. Moreover, our results provide strong evidence that the TiO2 NPs can induce the liver pathological changes of rats. The intraperitoneal injection of TiO2 NPs increased the accumulation of titanium in the liver, lung, and the brain. The results suggest that TiO2 NPs could alter the neurobehavioral performance of adult Wistar rats and promotes alterations in hepatic tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-4002-5DOI Listing

Publication Analysis

Top Keywords

tio2 nps
36
tio2
10
nps
9
titanium dioxide
8
emotional behavior
8
subacute exposure
8
adult wistar
8
wistar rats
8
injection tio2
8
subacute
4

Similar Publications

Biosynthesized nanoparticles have a variety of applications, and microorganisms are considered one of the most ideal sources for the synthesis of green nanoparticles. Icerya aegyptiaca (Douglas) is a pest that has many generations per year and can affect 123 plant species from 49 families by absorbing sap from bark, forming honeydew, causing sooty mold, and attracting invasive ant species, leading to significant agricultural losses. The purpose of this work was to synthesize titanium dioxide nanoparticles (TiO-NPs) from marine actinobacteria and evaluate their insecticidal effects on Icerya aegyptiaca (Hemiptera: Monophlebidae), in addition to explaining their effects on protein electrophoresis analysis of SDS‒PAGE proteins from control and treated insects after 24, 72 and 120 h of exposure.

View Article and Find Full Text PDF

How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic framework materials. In this paper, a facile method is developed by fabricating titanium dioxide nanoparticles (TiO NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks with zinc ions as the linkers (ZnTCuMT-X, "Zn" represented zinc ions as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu coordinated into the porphyrin macrocycle, "M" represented metal-organic frameworks, the second "T" represented TiO NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It is found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H generation, which is ≈28.

View Article and Find Full Text PDF

Titanium dioxide nanoparticles (TiO NPs) can induce the cell cycle arrest in spermatogonia, and the JAK2/STAT3 signaling pathway plays a pivotal role in cell cycle progression, but the specific upstream regulatory mechanisms are not completely clarified. The purpose of this study was to investigate whether CXCL13 regulated the JAK2/STAT3 signaling pathway to participate in cell cycle arrest after mouse spermatogonia cell line (GC-1) exposure to TiO NPs. The GC-1 cells were treated with TiO NPs at different concentrations (0, 10, 20, 30, and 40 μg/mL) for 24 h to detect cell viability, cell cycle distribution, CXCL13 protein, JAK2/STAT3 pathway-related proteins, and cell cycle-related proteins.

View Article and Find Full Text PDF

Carbon quantum dots modification reduces TiO nanoparticle toxicity in an aquatic food chain.

J Hazard Mater

January 2025

Environment Research Institute, Shandong University, Qingdao 266237, China. Electronic address:

Carbon quantum dots (CQDs) are emerging as a promising zero-dimensional carbon nanomaterial with the potential to enhance the catalytic properties of titanium dioxide nanoparticles (TiO NPs). Although CQDs modification alters the physicochemical properties of TiO NPs, the impact on their toxicity has been rarely explored. In this study, we investigated the effects of CQDs doping on the toxicity, bioaccumulation, and trophic transfer of TiO NPs using a representative aquatic food chain comprising phytoplankton (Scenedesmus obliquus), zooplankton (Daphnia magna), and fish (Danio rerio).

View Article and Find Full Text PDF

To sensitively monitor trace-level of malathion (MAT) in vegetable samples, an ultrasensitive solid-state electrochemiluminescence (ECL) sensor was proposed based on TiO@CdSe and Ru(bpy)@Ag NPs. In this system, the introduction of Ag NPs enhanced the initial ECL signal of Ru(bpy)- tripropylamine (TPrA). When TiO@CdSe was introduced into the system, the ECL signal was further enhanced, which may be due to the synergistic effect of the two complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!