[Effects of citalopram on the expression of PCNA and C-fos and cell apoptosis in rat frontal cortical neurons after stress].

Zhongguo Ying Yong Sheng Li Xue Za Zhi

Department of Psychological Medicine, Medical College, Shaoxing University, China.

Published: September 2014

Objective: To study the effects of citalopram on the expression of proliferating cell nuclear antigen (PCNA) and proto-oncogene protein (C-fos) and cell apoptosis in frontal cortical neurons of rat after stress.

Methods: Twenty four healthy male SD rats were randomly divided into three groups (n = 8): control group, stress group (treated with saline, ig) , experimental group (treated with Citalopram 4 mg/kg x d for 28 days, ig). Rats were forced to swim to establish chronic stress model. The protein expression levels of PCNA and C-fos were tested by immunohistochemistry assay. TUNEL assay was used to test cell apoptosis. Nikon image analysis software was used to determine the number of positive cells in each index.

Results: Compared with the control group, the stress group showed a smaller amount of PCNA-positive cells, a larger number of C-fos positive cells, and the volume of positive cells was significantly reduced. Compared with the stress group, the PCNA positive cells were increased significantly, the C-fos positive cells and TUNEL positive cells were decreased significantly, nuclear condensation phenomenon in frontal cortical neurons and the staining was significantly lighter in experimental group (P < 0.05).

Conclusion: Citalopram significantly antagonize PCNA, C-fos protein expression and cell apoptosis of rat prefrontal cortical neurons caused by chronic stress, which might be the one of mechanisms of citalopram for prevention and treatment of psychosis caused by chronic stress.

Download full-text PDF

Source

Publication Analysis

Top Keywords

positive cells
24
cell apoptosis
16
cortical neurons
16
pcna c-fos
12
frontal cortical
12
stress group
12
chronic stress
12
citalopram expression
8
c-fos cell
8
apoptosis rat
8

Similar Publications

Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).

View Article and Find Full Text PDF

Nobiletin: a potential erythropoietin receptor activator protects renal cells against hypoxia.

Apoptosis

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.

Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.

View Article and Find Full Text PDF

Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.

View Article and Find Full Text PDF

Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!