Endovascular stent deployment is a mechanical procedure used to rehabilitate a diseased arterial segment by restoring blood flow in occluded regions. The success or failure of the stent implantation depends on the stent device and the deployment technique. The optimal stent deployment can be predicted by investigating the factors that influence this minimally invasive procedure. In this study, we propose a methodology which evaluates the alterations in the arterial environment caused by stent deployment. A finite element model of a reconstructed right coronary artery with a stenosis was created based on anatomical information provided by intravascular ultrasound and angiography. The model was used to consider placement and performance after intervention with a commercially available Leader Plus stent. The performance of the stent, within this patient-specific arterial segment is presented, as well as the induced arterial deformation and straightening. The arterial stress distribution is analyzed with respect to possible regions of arterial injury. Our approach can be used to optimize stent deployment and to provide cardiologists with a valuable tool to visually select the position and deploy stents in patient-specific reconstructed arterial segments, thereby enabling new methods for optimal cardiovascular stent positioning.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2014.6944902DOI Listing

Publication Analysis

Top Keywords

stent deployment
16
arterial segment
12
stent
10
finite element
8
stent implantation
8
arterial
8
reconstructed arterial
8
deployment
5
element analysis
4
analysis stent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!