This paper presents two low complexity and yet robust methods for automated seizure detection using a set of 2 intracranial Electroencephalogram (iEEG) recordings. Most current seizure detection methods suffer from high number of false alarms, even when designed to be subject-specific. In this study, the ratios of power between pairs of frequency bands are used as features to detect epileptic seizures. For comparison, these features are calculated from monopolar and bipolar iEEG recordings. Optimal thresholds are individually determined and used for each feature. Alarms are generated when the measure passes the threshold. The detector was applied to long-term continuous invasive recordings from 5 patients with refractory partial epilepsy, containing 54 seizures in 780 hours. On average, the results revealed 88.9% sensitivity, a very low false detection rate of 0.041 per hour (h(-1)) and detection latency of 9.4 seconds.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2014.6944611DOI Listing

Publication Analysis

Top Keywords

seizure detection
12
low complexity
8
ieeg recordings
8
detection
5
robust low
4
complexity algorithms
4
algorithms seizure
4
detection paper
4
paper presents
4
presents low
4

Similar Publications

This study intents to detect graphical network features associated with seizure relapse following antiseizure medication (ASM) withdrawal. Twenty-four patients remaining seizure-free (SF-group) and 22 experiencing seizure relapse (SR-group) following ASM withdrawal as well as 46 matched healthy participants (Control) were included. Individualized morphological similarity network was constructed using T1-weighted images, and graphic metrics were compared between groups.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.

Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.

View Article and Find Full Text PDF

In the medical field, there are several very different movement disorders, such as tremors, Parkinson's disease, or Huntington's disease. A wide range of motor and non-motor symptoms characterizes them. It is evident that in the modern era, the use of smart wrist devices, such as smartwatches, wristbands, and smart bracelets is spreading among all categories of people.

View Article and Find Full Text PDF

Epilepsy Prediction and Detection Using Attention-CssCDBN with Dual-Task Learning.

Sensors (Basel)

December 2024

Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE, Minzu University of China, Beijing 100081, China.

Epilepsy is a group of neurological disorders characterized by epileptic seizures, and it affects tens of millions of people worldwide. Currently, the most effective diagnostic method employs the monitoring of brain activity through electroencephalogram (EEG). However, it is critical to predict epileptic seizures in patients prior to their onset, allowing for the administration of preventive medications before the seizure occurs.

View Article and Find Full Text PDF

A Novel Real-Time Threshold Algorithm for Closed-Loop Epilepsy Detection and Stimulation System.

Sensors (Basel)

December 2024

The Department of Information Systems and Computer Science, Ateneo de Manila University, Quezon City 1108, Philippines.

Epilepsy, as a common brain disease, causes great pain and stress to patients around the world. At present, the main treatment methods are drug, surgical, and electrical stimulation therapies. Electrical stimulation has recently emerged as an alternative treatment for reducing symptomatic seizures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!