The planning of goal-directed movement towards targets in different parts of space is an important function of the brain. Such visuo-motor planning and execution is known to involve multiple brain regions, including visual, parietal, and frontal cortices. To understand how these brain regions work together to both plan and execute goal-directed movement, it is essential to describe the dynamic causal interactions among them. Here we model causal interactions of distributed cortical source activity derived from non-invasively recorded EEG, using a combination of ICA, minimum-norm distributed source localization (cLORETA), and dynamical modeling within the Source Information Flow Toolbox (SIFT). We differentiate network causal connectivity of reach planning and execution, by comparing the causal network in a speeded reaching task with that for a control task not requiring goal-directed movement. Analysis of a pilot dataset (n=5) shows the utility of this technique and reveals increased connectivity between visual, motor and frontal brain regions during reach planning, together with decreased cross-hemisphere visual coupling during planning and execution, possibly related to task demands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6944599 | DOI Listing |
BMC Psychol
January 2025
Faculty of Psychology, Naval Medical University, Shanghai, China.
Anxiety is known to significantly impair cognitive function, particularly attentional control. While exercise has been demonstrated to alleviate these cognitive deficits, the precise neural mechanisms underlying these effects remain poorly understood. This study examines the effects of exercise on attentional control in individuals with high trait anxiety, based on attentional control theory, which suggests that such individuals have reduced top-down attention.
View Article and Find Full Text PDFPsychiatr Clin North Am
March 2025
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kennedy Krieger Institute, Baltimore, MD, USA.
The underlying pathophysiology of tics in Tourette syndrome is a topic of major scientific interest. To date, there is an absence of consensus among researchers regarding the precise anatomic location responsible for tics. The goal of this article is to review the current understanding of these brain circuits and data supporting specific anatomic regions.
View Article and Find Full Text PDFQ J Exp Psychol (Hove)
January 2025
Centre for Motor Control, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada.
The influence of gaze cues on target prioritization (reaction times (RTs)) and movement execution (movement trajectories) differs based on the ability of the human gaze cue model to manually interact with the targets. Whereas gaze cues consistently impacted RTs, movement trajectories may only be affected when the hands of the human model had the potential to interact with the target. However, the perceived ability to interact with the targets was confounded by the proximity between the model's hands and the targets.
View Article and Find Full Text PDFBehav Res Methods
January 2025
Department of Child and Adolescent Psychiatry and Psychotherapy, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
Spatial exploration is a complex behavior that can be used to gain information about developmental processes, personality traits, or mental disorders. Typically, this is done by analyzing movement throughout an unknown environment. However, in human research, until now there has been no overview on how to analyze movement trajectories with regard to exploration.
View Article and Find Full Text PDFNeuron
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. Electronic address:
The interplay between two major forebrain structures-cortex and subcortical striatum-is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!