The planning of goal-directed movement towards targets in different parts of space is an important function of the brain. Such visuo-motor planning and execution is known to involve multiple brain regions, including visual, parietal, and frontal cortices. To understand how these brain regions work together to both plan and execute goal-directed movement, it is essential to describe the dynamic causal interactions among them. Here we model causal interactions of distributed cortical source activity derived from non-invasively recorded EEG, using a combination of ICA, minimum-norm distributed source localization (cLORETA), and dynamical modeling within the Source Information Flow Toolbox (SIFT). We differentiate network causal connectivity of reach planning and execution, by comparing the causal network in a speeded reaching task with that for a control task not requiring goal-directed movement. Analysis of a pilot dataset (n=5) shows the utility of this technique and reveals increased connectivity between visual, motor and frontal brain regions during reach planning, together with decreased cross-hemisphere visual coupling during planning and execution, possibly related to task demands.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2014.6944599DOI Listing

Publication Analysis

Top Keywords

goal-directed movement
12
planning execution
12
brain regions
12
causal interactions
8
reach planning
8
causal
5
planning
5
causal analysis
4
analysis cortical
4
cortical networks
4

Similar Publications

Anxiety is known to significantly impair cognitive function, particularly attentional control. While exercise has been demonstrated to alleviate these cognitive deficits, the precise neural mechanisms underlying these effects remain poorly understood. This study examines the effects of exercise on attentional control in individuals with high trait anxiety, based on attentional control theory, which suggests that such individuals have reduced top-down attention.

View Article and Find Full Text PDF

The Pathophysiology of Tics: An Anatomic Review.

Psychiatr Clin North Am

March 2025

Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kennedy Krieger Institute, Baltimore, MD, USA.

The underlying pathophysiology of tics in Tourette syndrome is a topic of major scientific interest. To date, there is an absence of consensus among researchers regarding the precise anatomic location responsible for tics. The goal of this article is to review the current understanding of these brain circuits and data supporting specific anatomic regions.

View Article and Find Full Text PDF

EXPRESS: Activation of the Motor System Following Gaze Cues is Determined by Hand Access, Not Hand Proximity.

Q J Exp Psychol (Hove)

January 2025

Centre for Motor Control, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, Ontario, Canada.

The influence of gaze cues on target prioritization (reaction times (RTs)) and movement execution (movement trajectories) differs based on the ability of the human gaze cue model to manually interact with the targets. Whereas gaze cues consistently impacted RTs, movement trajectories may only be affected when the hands of the human model had the potential to interact with the target. However, the perceived ability to interact with the targets was confounded by the proximity between the model's hands and the targets.

View Article and Find Full Text PDF

Towards a characterization of human spatial exploration behavior.

Behav Res Methods

January 2025

Department of Child and Adolescent Psychiatry and Psychotherapy, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.

Spatial exploration is a complex behavior that can be used to gain information about developmental processes, personality traits, or mental disorders. Typically, this is done by analyzing movement throughout an unknown environment. However, in human research, until now there has been no overview on how to analyze movement trajectories with regard to exploration.

View Article and Find Full Text PDF

The interplay between two major forebrain structures-cortex and subcortical striatum-is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!