Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a novel approach to single-channel ECG-EMG signal separation by means of enhanced non-negative matrix factorization (NMF). The approach is based on a linear decomposition of the input signal spectrogram in two non-negative components, which represent the ECG and EMG spectrogram estimates. As ECG and EMG have different time-frequency (TF) patterns, the decomposition is enhanced by reshaping the input mixture spectrogram in order to emphasize a sparse ECG over a noisy-like EMG. Moreover, initialization of the classical NMF algorithm with accurately designed ECG and EMG structures further increases its separation performance. The comparative study suggests that the proposed method outperforms two reference methods for both synthetic and real signal mixture scenarios.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6944553 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!