Ovarian cancer, the most fatal of reproductive cancers, is the fifth leading cause of death in women in the United States. Serous borderline ovarian tumors (SBOTs) are considered to be earlier or less malignant forms of serous ovarian carcinomas (SOCs). SBOTs are asymptomatic and progression to advanced stages is common. Using DNA microarray technology, we designed multicategory classification models to discriminate ovarian cancer subclasses. To develop multicategory classification models with optimal parameters and features, we systematically evaluated three machine learning algorithms and three feature selection methods using five-fold cross validation and a grid search. The study included 22 subjects with normal ovarian surface epithelial cells, 12 with SBOTs, and 79 with SOCs according to microarray data with 54,675 probe sets obtained from the National Center for Biotechnology Information gene expression omnibus repository. Application of the optimal model of support vector machines one-versus-rest with signal-to-noise as a feature selection method gave an accuracy of 97.3%, relative classifier information of 0.916, and a kappa index of 0.941. In addition, 5 features, including the expression of putative biomarkers SNTN and AOX1, were selected to differentiate between normal, SBOT, and SOC groups. An accurate diagnosis of ovarian tumor subclasses by application of multicategory machine learning would be cost-effective and simple to perform, and would ensure more effective subclass-targeted therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6944360 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!