Physiological sensor based workload estimation technology provides a real-time means for assessing cognitive workload and has a broad range of applications in cognitive ergonomics, mental health monitoring, etc. In this paper we report a study on detecting changes in workload using multi-modality physiological sensors and a novel feature extraction and classification algorithm. We conducted a cognitive workload experiment involving multiple subjects and collected an extensive data set of EEG, ECG and GSR signals. We show that the GSR signal is consistent with the variations of cognitive workload in 75% of the samples. To explore cardiac patterns in ECG that are potentially correlated with the cognitive workload process, we computed various heart-rate-variability features. To extract neuronal activity patterns in EEG related to cognitive workload, we introduced a filter bank common spatial pattern filtering technique. As there can be large variations in e.g. individual responses to the cognitive workload, we propose a large margin unbiased recursive feature extraction and regression method. Our leave-one-subject-out cross validation test shows that, using the proposed method, EEG can provide significantly better prediction of the cognitive workload variation than ECG, with 87.5% vs 62.5% in accuracy rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6944250 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!