In this paper, a superpixel and convolution neural network (CNN) based segmentation method is proposed for cervical cancer cell segmentation. Since the background and cytoplasm contrast is not relatively obvious, cytoplasm segmentation is first performed. Deep learning based on CNN is explored for region of interest detection. A coarse-to-fine nucleus segmentation for cervical cancer cell segmentation and further refinement is also developed. Experimental results show that an accuracy of 94.50% is achieved for nucleus region detection and a precision of 0.9143±0.0202 and a recall of 0.8726±0.0008 are achieved for nucleus cell segmentation. Furthermore, our comparative analysis also shows that the proposed method outperforms the related methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6944230 | DOI Listing |
J Neurol
January 2025
Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.
Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.
Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.
J Neurol
January 2025
Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
Background And Objective: Neuronal intranuclear inclusion disease (NIID) is a multifaceted disorder impacting both the central and peripheral nervous systems. This study aims to investigate the clinical and electrophysiological characteristics of peripheral neuropathy in patients with NIID.
Methods: In this cross-sectional study, patients diagnosed with NIID were prospectively recruited from multiple centers across China between October 2017 and May 2024.
Aging (Albany NY)
January 2025
Department of Medicine, Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan.
Introduction: Bone turnover markers reflected the bone remodeling process and bone health in clinical studies. Studies on variation of bone remodeling markers in different stage CKD were scant, and this study investigated the role of bedside intradialytic cycling in altering concentrations of bone-remodeling markers in patients with end-stage renal disease (ESRD).
Materials And Methods: Participants were segmented into four groups: a group with eGFR >60 ml/min/1.
Vasc Biol
January 2025
M Daemen, Pathology, Amsterdam UMC Location AMC, Amsterdam, Netherlands.
Background: Although mice are used extensively to study atherosclerosis of different vascular beds, limited data is published on the occurrence of intracranial atherosclerosis. Since intracranial atherosclerosis is a common cause of stroke and is associated with dementia, a relevant animal model is needed to study these diseases.
Methods And Results: We examined the presence of intracranial atherosclerosis in different atherogenic mouse strains and studied differences in vessel wall characteristics in mouse and human tissue in search for possible explanations for the different atherosclerotic susceptibility between extracranial and intracranial vessels.
Adv Mater
January 2025
National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
3D printed titanium scaffold has promising applications in orthopedics. However, the bioinert titanium presents challenges for promoting vascularization and tissue growth within the porous scaffold for stable osteointegration. In this study, a modular porous titanium scaffold is created using 3D printing and a gradient-surface strategy to immobilize QK peptide on the surface with a bi-directional gradient distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!