Analysis of physiological responses provides an objective measure of a person's affective state and has been proposed as a way to evaluate motivation and engagement of therapy clients during robot-assisted therapy regimens. This paper presents the analysis of three physiological responses to different levels of error amplification in a robotic reaching task to understand the feasibility of using physiological signals in order to modify therapy exercises to achieve higher participant attentiveness. In a pilot study with 22 healthy participants, we analyzed skin conductance, skin temperature, and respiration signals, with two main goals: 1) to compare physiological parameters between baseline (rest) and error-amplified reaching motion periods; and 2) to compare physiological parameters between reaching motion periods with different levels of error amplification. Results show that features extracted from skin conductance and respiration signals show significant differences between different error amplification levels. Features extracted from the skin temperature signal are not as reliable as measures of skin conductance and respiration, however they can provide supplementary information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6944084 | DOI Listing |
Neuroimage
January 2025
Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea. Electronic address:
Magnetic resonance electrical properties tomography can extract the electrical properties of in-vivo tissue. To estimate tissue electrical properties, various reconstruction algorithms have been proposed. However, physics-based reconstructions are prone to various artifacts such as noise amplification and boundary artifact.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Bioinfomatics Center of Academy of Military Medical Sciences, Beijing 100850, China.
Gene synthesis is an enabling technology that supports the development of synthetic biology. The existing approaches for gene synthesis generally have tedious operation, low efficiency, high error rates, and limited product lengths, being difficult to support the huge demand of synthetic biology. The assembly and error correction are the keys in gene synthesis.
View Article and Find Full Text PDFGates Open Res
January 2025
University of Virginia, Charlottesville, Virginia, USA.
Background: The TaqMan Array Card (TAC) is an arrayed, high-throughput qPCR platform that can simultaneously detect multiple targets in a single reaction. However, the manual post-run analysis of TAC data is time consuming and subject to interpretation. We sought to automate the post-run analysis of TAC data using machine learning models.
View Article and Find Full Text PDFHortic Res
January 2025
Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Mazhang District, Zhanjiang 524091, China.
Oligonucleotide (Oligo)-based fluorescence hybridization (FISH) represents a highly effective methodology for identifying plant chromosomes. Longan is a commercially significant fruit species, yet lacking basic chromosomal markers has hindered its cytogenetic research. In this study, we developed a cost-effective oligo-based system for distinguishing chromosomes of longan ( Lour.
View Article and Find Full Text PDFOphthalmol Ther
January 2025
Eye School of Chengdu, University of Traditional Medicine, Chengdu, 510100, Sichuan Province, China.
Introduction: This study aimed to compare changes in retinal oxygen saturation 1 month after femtosecond-assisted laser in situ keratomileusis (FS-LASIK) in Chinese adults with myopia using retinal oximetry.
Methods: In this prospective, observational, single-center cohort study, Chinese adults aged 18-45 years with myopia were categorized into four groups according to spherical equivalent (SE), with 66 eyes characterized as low myopia (LM -3.00D < SE ≤ -0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!