Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: In-vivo implanted vascular grafts fail due to the mechanical mismatch between the native vessel and the implant. The biomechanical characterization of native vessels provides valuable information towards the development of synthetic grafts.
Materials And Methods: Five samples of electrospun nanofibrous poly(L-lactic acid)(PLLA) tubular structures were subjected to physiological pulsating pressure using an experimental setup. Four ovine femoral arteries were also tested in the experimental setup under the same conditions. Instantaneous diameter and pressure signals were obtained using gold standard techniques, in order to estimate the dynamic pressure-strain elastic modulus (E(Pε)) of both native vessels and grafts.
Results: Synthetic grafts showed a significant increase of E(Pε) (10.57±0.97 to 17.63±2.61 10(6) dyn/cm(2)) when pressure was increased from a range of 50-90 mmHg (elastin-response range) to a range of 100-130 mmHg (collagen-response range). Furthermore, femoral arteries also exhibited a significant increase of EPε (1.66±0.30 to 15.76±4.78 10(6) dyn/cm(2)) with the same pressure variation, showing that both native vessels and synthetic grafts have a similar behavior in the collagen-acting range.
Conclusion: The mechanical behavior of PLLA vascular grafts was characterized In vitro. However, the procedure can be easily extrapolated to In vivo experiences in conscious and chronically instrumented animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6944080 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!