Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As a first step toward building a smart home behavioral monitoring system capable of classifying a wide variety of human behavior, a wireless sensor network (WSN) system is presented for RSSI localization. The low-cost, non-intrusive system uses a smart watch worn by the user to broadcast data to the WSN, where the strength of the radio signal is evaluated at each WSN node to localize the user. A method is presented that uses simultaneous localization and mapping (SLAM) for system calibration, providing automated fingerprinting associating the radio signal strength patterns to the user's location within the living space. To improve the accuracy of localization, a novel refinement technique is introduced that takes into account typical movement patterns of people within their homes. Experimental results demonstrate that the system is capable of providing accurate localization results in a typical living space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2014.6944048 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!