A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemical biochip for applications to wireless and batteryless monitoring of free-moving mice. | LitMetric

AI Article Synopsis

  • A new multi-sensing platform is developed for monitoring small animals wirelessly and without batteries, featuring six sensors that can detect disease markers and therapeutic compounds.
  • The platform utilizes advanced materials like Multi-Walled Carbon Nanotubes (MWCNTs) and enzyme functionalization for increased sensitivity and specificity in detecting various biological substances.
  • It demonstrates impressive capabilities in measuring parameters like lactate, glucose, Etoposide, pH levels, and physiological temperature, with specified sensitivities and limits of detection for each parameter.

Article Abstract

A multi-sensing platform for applications in wireless and batteryless monitoring of free-moving small animals is presented in this paper. The proposed platform hosts six sensors: four biosensors for sensing of both disease biomarkers and therapeutic compounds, and two further sensors (T and pH) for biosensor calibration. Electrodeposition of Multi-Walled Carbon Nanotubes (MWCNTs) and the subsequent function-alization with proper enzymes is used to assure sensitivity and specificity in electrochemical biosensing. The realized sensors are demonstrated to be capable of measuring several parameters: lactate with a sensitivity of 77±26 μA/mM· cm(2) and a limit of detection (LOD) of 4±1 μM; glucose with a sensitivity of 63±15 μA/mM· cm(2) and a LOD of 8±2 μM; Etoposide (a well known anti-cancer agent) with a sensitivity of 0.15±0.04 mA/mM· cm(2) and a LOD of 4±1 μM; Open Circuit Potential (OCP) measurements are used on a Pt/IrOx junction to sense pH with a sensitivity of around -75±5mV/pH; while a Pt resistive thermal device is used to measure physiological temperature-range with an average sensitivity of 0.108±0.001 kΩ/°C.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2014.6944012DOI Listing

Publication Analysis

Top Keywords

applications wireless
8
wireless batteryless
8
batteryless monitoring
8
monitoring free-moving
8
μa/mm· cm2
8
lod 4±1
8
4±1 μm
8
cm2 lod
8
sensitivity
6
electrochemical biochip
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!